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Goal
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Roadmap

• Lay out the framework required for any machine learning algorithm

• Understand the framework in the context of neural networks

• Understand the limitations and strengths of network architectures

• Understand all of this in the context of protein/nucleotide sequences
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Representation

5



Motivation
• Think back to the ESE sequences

• How did you analyze the “fitness” of these sequences

AGAAGA
ACGACT

AATCCA
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Position Specific Scoring Matrices
• Built a PSSM!

• Each entry corresponded to the probability of seeing a nucleotide at the 
given position

•What are the limitations/strengths of this?
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Position Specific Scoring Matrices
• Built a PSSM!

• Each entry corresponded to the probability of seeing a nucleotide at the 
given position

•What are the limitations/strengths of this?
• Sequences must be uniform length
• Assume all positions to be independent of each other
• Simple model (Occam’s razor is real!)
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Classification
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ESE sequences

Non-ESE 
sequences



One-Hot Encoding of Peptides
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Bag of Amino Acids/Nucleotides
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Pairwise distances/similarities
• Not an explicit representation in vector space
• But recall SVMs only need the pairwise similarities

• Can be achieved through pairwise sequence alignment
• Needleman Wunsch or Smith Waterman

• Careful that these pairwise distances/similarities are metric
• d(x, y) = d(y, x)
• d(x, y) ≥ 0
• d(x, y) + d(y, z) > d(x, z)
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Pairwise distances/similarities
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BLOSUM 50

BLAST Similarity Matrix



Prediction
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Forward Pass

• Some function f(x) that maps our d dimensions to scores for each class

• f(x) is parametrized by weights given by matrix W

• Given d dimensions and k classes, Wd x k

• Predictions are given by WTx + b (or some chained version of this)

• This is called the forward pass of neural networks

• For the rest of the talk, assume x to be a one-hot encoded sequence
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Fully Connected Neural Nets
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Pros/Cons

+ Easy to build and train
+ Preserve positional information of residues
- Fixed length inputs require various hacks to make inputs the same length
- No explicit encoding of interdependence between residues
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2D Convolutional Neural Nets
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1D Convolutional Neural Nets
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Pros/Cons

+ Considers motifs rather than individual residues
- Lose positional information
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Side Note: 3D CNNs

• There’s been some excitement surrounding 3D convolutions on protein 
structure

• Recent papers such as those by Ragoza et al (2017) show the use of 3D 
convolutions for scoring protein-ligand interactions
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Recurrent Neural Nets
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Pros/Cons

+ Encodes interdependence between residues
+ Interdependence includes long-range dependencies (theoretically)
+  Handles variable length sequences naturally
+  Maintains a sense of positional information
- Quite unstable to train and converge
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Long Short-Term Memory Networks
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Pros/Cons

+ Encodes interdependence between residues
+ Interdependence includes long-range dependencies (actually)
+  Handles variable length sequences naturally
+  Maintains a sense of positional information
- Harder to train than the CNN/FC but much easier than a vanilla RNN
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Loss
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Probabilities

• Predictions from the net are unnormalized scores

•We’d like to obtain normalized probabilities such that
• 𝟎 ≤ 𝒑𝒌 ≤ 𝟏

• 𝒑𝒌 =
𝒆𝒇𝒌

∑𝒋 𝒆
𝒇𝒋

• This is the softmax function
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Data loss

• The loss for an example i is given by

• The total loss over the data for all examples is
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Regularization loss

• Notice that an infinite number of W can minimize our loss

• Concretely, for any W that minimizes our loss so does λW for λ > 1

• In order to constrain this search we apply a regularization loss

𝟏
𝟐
,
𝒌

,
𝒍

𝑾𝒌,𝒍
𝟐
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Total loss

• Thus the total loss is given by
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Minimization
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Complete random search

• Each iteration pick a new random W

• If the loss is lower than the previously seen best loss, use this as your 
new W
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Complete random search
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Local Random Search

• Each iteration pick a random direction to step in W

• If the loss is lower than the previously seen best loss, use this as your 
new W
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Local Random Search
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Gradient descent

• But we can do better!

•We know the exact direction of steepest descent

• It is the negative of the gradient
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Numerical Gradient Descent
• Recall

• Calculate the numerical gradient in each direction

• This results in a vector of partial derivatives

• Update the weights according to steepest descent
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Step Size
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Analytical Gradient Descent
• Recall the probability and loss function derived earlier

• Differentiating wrt fk
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Analytical Gradient Descent
• Recall there’s also a regularization term

• Differentiating wrt w
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Putting it all together

• Open iPython notebook
• https://cs.stanford.edu/people/karpathy/cs231nfiles/minimal_net.html

41
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Step Size Revisited
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Other notes

• In practice, don’t perform the updates using all examples

• Do it in mini batches

•Works because samples are considered to be correlated

• SGD is extreme case of update per sample (online learning)
• In practice SGD is still done in mini batches

• Batches are usually powers of 2: 32, 64, 128 etc.
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In Real Life (IRL)
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Cancer Immunotherapy

• Utilize the patient’s immune system to fight the tumour

• Identify antigens from the tumour (neoantigens) that bind the patient’s 
MHC molecules as being foreign (as a result of mutations)

• Result in an activation of an immune response against the tumour
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Peptide-MHC binding
Binding of a peptide to an MHC molecule is the first critical step in the formation of 
an immune response

BAKER LAB, UNIVERSITY OF NOTRE DAME



Peptide-MHC TCR complex

ZOETE ET AL, 2013



MHCnuggets

• One-hot encoded peptides

• Build a separate neural network for each MHC allele

• Each network is an LSTM layer of 64 units with an FC layer of 64 units 
stack on top

• Utilize a transfer learning protocol to generate better predictions for rare 
MHC alleles
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Transfer learning

BHATTACHARYA ET AL, 2017
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tSNE on feature space



Questions
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