INSTITUTE for
COMPUTATIONAL

MEDICINE

\J\

Deep Learning
An introduction for proteins and DNA/RNA

ROHIT BHATTACHARYA

APRIL 16, 2018
DEPARTMENT OF COMPUTER SCIENCE




Table of contents

1. Goal

2. Machine learning framework
1. Representation
2. Prediction
3. Loss
4.  Minimization

3. In Real Life



Goal




Roadmap

* Lay out the framework required for any machine learning algorithm
* Understand the framework in the context of neural networks
* Understand the limitations and strengths of network architectures

* Understand all of this in the context of protein/nucleotide sequences



Representation




Motivation

* Think back to the ESE sequences

* How did you analyze the “fitness” of these sequences

AGAAGA
ACGACT

AATCCA



Position Specific Scoring Matrices

* Built a PSSM!

* Each entry corresponded to the probability of seeing a nucleotide at the
given position

* What are the limitations/strengths of this?




Position Specific Scoring Matrices

* Built a PSSM!

* Each entry corresponded to the probability of seeing a nucleotide at the
given position

* What are the limitations/strengths of this?
* Sequences must be uniform length

* Assume all positions to be independent of each other
* Simple model (Occam’s razor is real!)



Classification
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One-Hot Encoding of Peptides

20-length vector of amino acid identities
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Bag of Amino Acids/Nucleotides

4-length vector of nucleotide frequencies

n-residue sequence
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Pairwise distances/similarities

* Not an explicit representation in vector space

* But recall SVMs only need the pairwise similarities

* Can be achieved through pairwise sequence alignment
* Needleman Wunsch or Smith Waterman

* Careful that these pairwise distances/similarities are metric

* d(x, y) =dly, x)
*d(x,y)=0
* d(x, y) +d(y, z) > d(x, z)



IitIes

Pairwise distances/similar
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Prediction




Forward Pass

* Some function f(x) that maps our d dimensions to scores for each class
* f(x) is parametrized by weights given by matrix W

* Given d dimensions and k classes, Wy,

* Predictions are given by W'x + b (or some chained version of this)

* This is called the forward pass of neural networks

* For the rest of the talk, assume x to be a one-hot encoded sequence



Fully Connected Neural Nets
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Pros/Cons

+ Easy to build and train

+ Preserve positional information of residues

- Fixed length inputs require various hacks to make inputs the same length
- No explicit encoding of interdependence between residues




2D Convolutional Neural Nets

(4 x0)

Center element of the kernel is placed over the 8 : g;

source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.
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1D Convolutional Neural Nets
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nx20 Convolutional layer with Max-over-time Fully connected layer
representation of multiple filter widths and pooling with dropout and
peptide feature maps softmax output




Pros/Cons

+ Considers motifs rather than individual residues
- Lose positional information




Side Note: 3D CNNs

* There’s been some excitement surrounding 3D convolutions on protein
structure

* Recent papers such as those by Ragoza et al (2017) show the use of 3D
convolutions for scoring protein-ligand interactions



Recurrent Neural Nets
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Pros/Cons

+ Encodes interdependence between residues

+ Interdependence includes long-range dependencies (theoretically)
+ Handles variable length sequences naturally

+ Maintains a sense of positional information

- Quite unstable to train and converge



Long Short-Term Memory Networks
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Pros/Cons

+ Encodes interdependence between residues

+ Interdependence includes long-range dependencies (actually)

+ Handles variable length sequences naturally

+ Maintains a sense of positional information

- Harder to train than the CNN/FC but much easier than a vanilla RNN
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Probabilities

* Predictions from the net are unnormalized scores

* We'd like to obtain normalized probabilities such that

c0<pr=<1
° — efk
pk_Zjeff

* This is the softmax function



Data loss

* The loss for an example i is given by

eh
L""“g(zjeﬂ)

* The total loss over the data for all examples is

1
N 2L




Regularization loss

* Notice that an infinite number of W can minimize our loss
* Concretely, for any W that minimizes our loss so does AW forA > 1

* In order to constrain this search we apply a regularization loss

1
2
20,0 Wk
kT



Total loss

* Thus the total loss is given by

1 1
L=NZL,+§/1;ZW£I
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data loss regularization loss



Minimization




Complete random search

* Each iteration pick a new random W

* If the loss is lower than the previously seen best loss, use this as your
new W




Complete random search

W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
loss = L(X train, Y train, W) # get the loss over the entire training set
if loss < bestloss: # keep track of the best solution

bestloss = loss

bestW = W



Local Random Search

* Each iteration pick a random direction to step in W

* If the loss is lower than the previously seen best loss, use this as your
new W




Local Random Search

step size = 0.0001
Wtry = W + np.random.randn(10, 3073) * step size
loss = L(Xtr cols, Ytr, Wtry)
if loss < bestloss:
W = Wtry
bestloss = loss



Gradient descent

* But we can do better!

* We know the exact direction of steepest descent

* It is the negative of the gradient




Numerical Gradient Descent

* Recall df (x) — lim fx+h) —f(x)

dx h -0 h

* Calculate the numerical gradient in each direction
* This results in a vector of partial derivatives

* Update the weights according to steepest descent

W new = W - step size * df # new position in the weight space



Step Size

fiw) fiw)

w* w w’ w
Too small: converge Too big: overshoot and
very slowly even diverge




Analytical Gradient Descent

* Recall the probability and loss function derived earlier

eli
= Li = —]o .
Pr o g(py,)
* Differentiating wrt f,
OL;
=pr— 1(y; =k



Analytical Gradient Descent

* Recall there’s also a regularization term

1 1
L=NZLi+§Azklzl:W,§,

—_—— N——

data loss regularization loss

* Differentiating wrt w

4 (Liw?) = dw



Putting it all together

* Open iPython notebook
 https://cs.stanford.edu/people/karpathy/cs231nfiles/minimal net.html



https://cs.stanford.edu/people/karpathy/cs231nfiles/minimal_net.html

Step Size Revisited
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Other notes

* In practice, don’t perform the updates using all examples
* Do it in mini batches
* Works because samples are considered to be correlated

* SGD is extreme case of update per sample (online learning)
* In practice SGD is still done in mini batches

* Batches are usually powers of 2: 32, 64, 128 etc.



In Real Life (IRL)




Cancer Immunotherapy

* Utilize the patient’s immune system to fight the tumour

* |dentify antigens from the tumour (neoantigens) that bind the patient’s
MHC molecules as being foreign (as a result of mutations)

* Result in an activation of an immune response against the tumour



Peptide-MHC binding

Binding of a peptide to an MHC molecule is the first critical step in the formation of
an immune response

BAKER LAB, UNIVERSITY OF NOTRE DAME



Peptide-MHC TCR complex

ZOETE ET AL, 2013



MHCnhuggets

* One-hot encoded peptides
* Build a separate neural network for each MHC allele

* Each network is an LSTM layer of 64 units with an FC layer of 64 units
stack on top

* Utilize a transfer learning protocol to generate better predictions for rare
MHC alleles



Transfer learning
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tSNE on feature space




Questions




