

Deep Learning

An introduction for proteins and DNA/RNA

ROHIT BHATTACHARYA

APRIL 16, 2018

DEPARTMENT OF COMPUTER SCIENCE

Table of contents

- 1. Goal
- 2. Machine learning framework
 - 1. Representation
 - 2. Prediction
 - 3. Loss
 - 4. Minimization
- 3. In Real Life

Goal

Roadmap

- Lay out the framework required for any machine learning algorithm
- Understand the framework in the context of neural networks
- Understand the limitations and strengths of network architectures
- Understand all of this in the context of protein/nucleotide sequences

Representation

Motivation

- Think back to the ESE sequences
- How did you analyze the "fitness" of these sequences

AGAAGA ACGACT

AATCCA

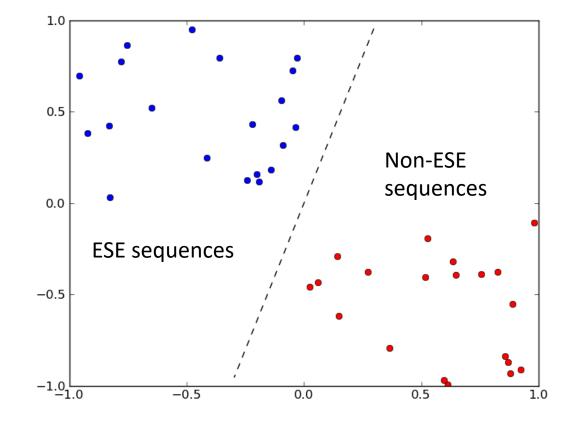
Position Specific Scoring Matrices

- Built a PSSM!
- Each entry corresponded to the probability of seeing a nucleotide at the given position
- What are the limitations/strengths of this?

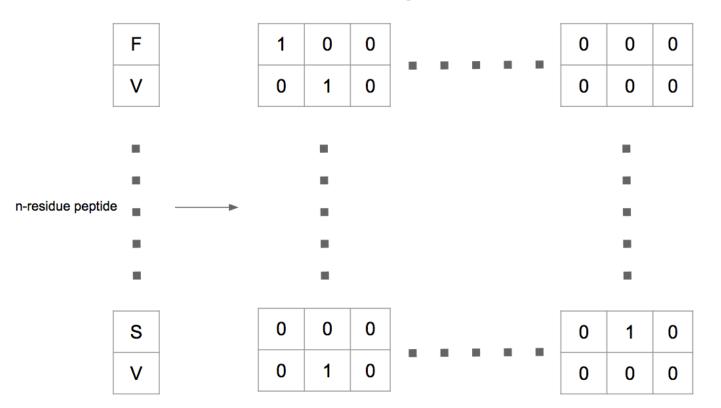
Position Specific Scoring Matrices

- Built a PSSM!
- Each entry corresponded to the probability of seeing a nucleotide at the given position
- What are the limitations/strengths of this?
 - Sequences must be uniform length
 - Assume all positions to be independent of each other
 - Simple model (Occam's razor is real!)

Classification

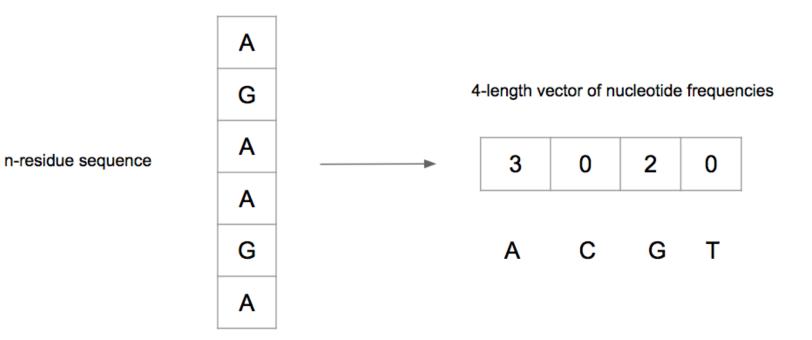


One-Hot Encoding of Peptides



20-length vector of amino acid identities

Bag of Amino Acids/Nucleotides



Pairwise distances/similarities

- Not an explicit representation in vector space
 - But recall SVMs only need the pairwise similarities
- Can be achieved through pairwise sequence alignment
 - Needleman Wunsch or Smith Waterman
- Careful that these pairwise distances/similarities are metric
 - d(x, y) = d(y, x)
 - $d(x, y) \ge 0$
 - d(x, y) + d(y, z) > d(x, z)

Pairwise distances/similarities

	A R N D C Q E G H I L K M F P S T W Y V
	A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -2 -1 -1 -3 -1 1 0 -3 -2 0
	R -2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3
	N -1 -1 7 2 -2 0 0 0 1 -3 -4 0 -2 -4 -2 1 0 -4 -2 -3
АТСG	D -2 -2 2 8 -4 0 2 -1 -1 -4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4
	C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1
	Q -1 1 0 0 -3 7 2 -2 1 -3 -2 2 0 -4 -1 0 -1 -1 -1 -3
A 5 - 4 - 4 - 4	E -1 0 0 2 -3 2 6 -3 0 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3
	G 0 -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -3 -4
	H -2 0 1 -1 -3 1 0 -2 10 -4 -3 0 -1 -1 -2 -1 -2 -3 2 -4
T - 4 5 - 4 - 4	I -1 -4 -3 -4 -2 -3 -4 -4 -4 5 2 -3 2 0 -3 -3 -1 -3 -1 4
	L -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1 1
c - 4 - 4 5 - 4	K -1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 -4 -1 0 -1 -3 -2 -3
	M -1 -2 -2 -4 -2 0 -2 -3 -1 2 3 -2 7 0 -3 -2 -1 -1 0 1
G - 4 - 4 - 4 5	F -3 -3 -4 -5 -2 -4 -3 -4 -1 0 1 -4 0 8 -4 -3 -2 1 4 -1
	P -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3
BLAST Similarity Matrix	S 1 -1 1 0 -1 0 -1 0 -1 -3 -3 0 -2 -3 -1 5 2 -4 -2 -2
	T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 2 5 -3 -2 0
	W -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 2 -3
	Y -2 -1 -2 -3 -3 -1 -2 -3 2 -1 -1 -2 0 4 -3 -2 -2 2 8 -1
	V 0 -3 -3 -4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 0 -3 -1 5

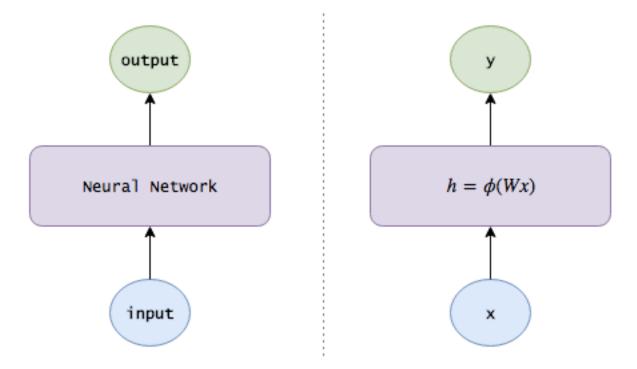
BLOSUM 50

Prediction

Forward Pass

- Some function *f(x)* that maps our *d* dimensions to scores for each class
- *f(x)* is parametrized by weights given by matrix *W*
- Given *d* dimensions and *k* classes, W_{dxk}
- Predictions are given by $W^T x + b$ (or some chained version of this)
- This is called the forward pass of neural networks
- For the rest of the talk, assume **x** to be a one-hot encoded sequence

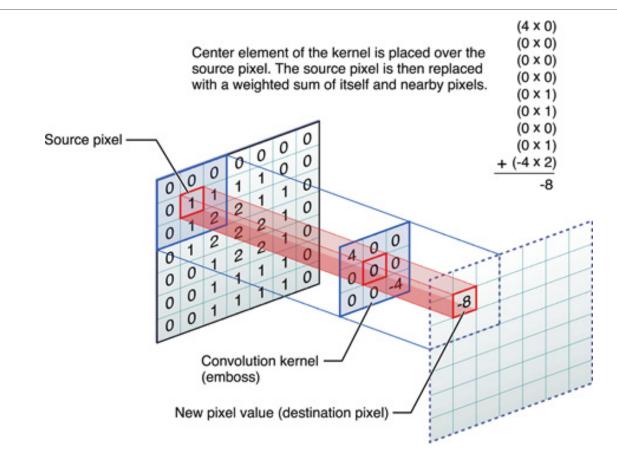
Fully Connected Neural Nets



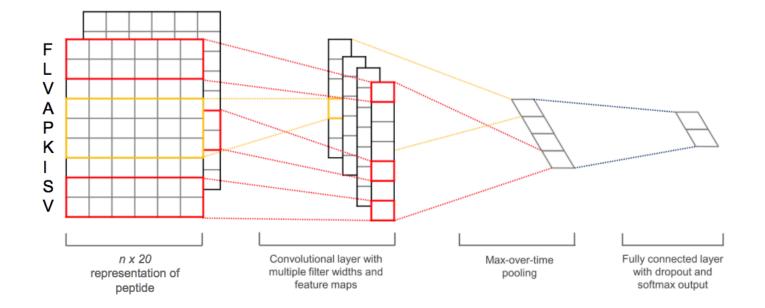
Pros/Cons

- + Easy to build and train
- + Preserve positional information of residues
- Fixed length inputs require various hacks to make inputs the same length
- No explicit encoding of interdependence between residues

2D Convolutional Neural Nets



1D Convolutional Neural Nets

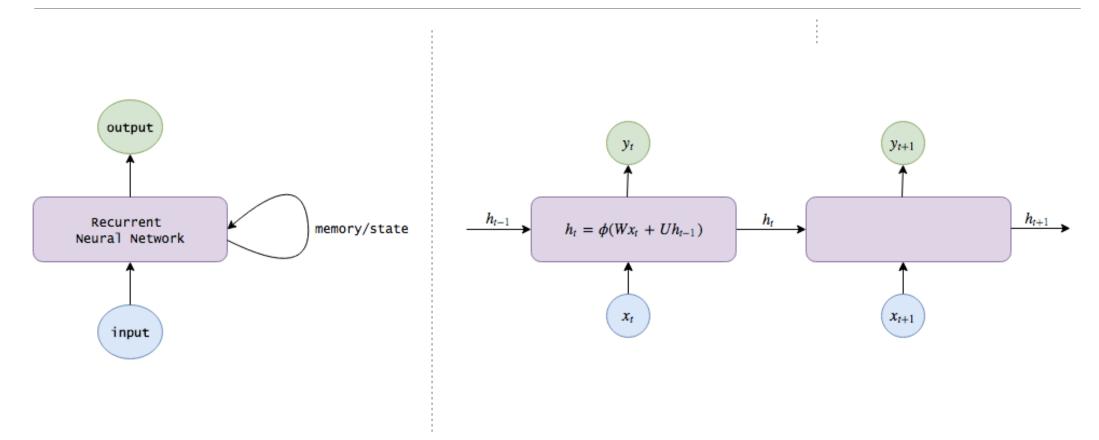


- + Considers motifs rather than individual residues
- Lose positional information

Side Note: 3D CNNs

- There's been some excitement surrounding 3D convolutions on protein structure
- Recent papers such as those by Ragoza et al (2017) show the use of 3D convolutions for scoring protein-ligand interactions

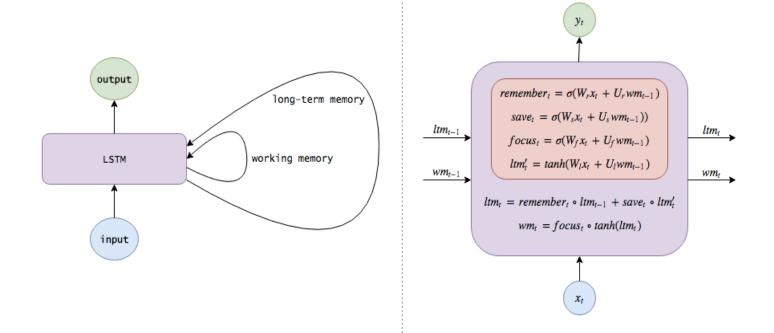
Recurrent Neural Nets



Pros/Cons

- + Encodes interdependence between residues
- + Interdependence includes long-range dependencies (theoretically)
- + Handles variable length sequences naturally
- + Maintains a sense of positional information
- Quite unstable to train and converge

Long Short-Term Memory Networks



Pros/Cons

- + Encodes interdependence between residues
- + Interdependence includes long-range dependencies (actually)
- + Handles variable length sequences naturally
- + Maintains a sense of positional information
- Harder to train than the CNN/FC but much easier than a vanilla RNN

Loss

Probabilities

- Predictions from the net are unnormalized scores
- We'd like to obtain normalized probabilities such that
 - $0 \le p_k \le 1$

•
$$p_k = \frac{e^{f_k}}{\sum_j e^{f_j}}$$

• This is the softmax function

Data loss

• The loss for an example *i* is given by

$$L_i = -\log\!\left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight)$$

• The total loss over the data for all examples is

$$\frac{1}{N}\sum_{i}L_{i}$$

Regularization loss

- Notice that an infinite number of **W** can minimize our loss
- Concretely, for any **W** that minimizes our loss so does λW for $\lambda > 1$
- In order to constrain this search we apply a **regularization loss**

Total loss

• Thus the total loss is given by

$$L = \frac{1}{N} \sum_{i} L_{i} + \frac{1}{2} \lambda \sum_{k} \sum_{l} W_{k,l}^{2}$$

data loss regularization loss

Minimization

Complete random search

- Each iteration pick a new random **W**
- If the loss is lower than the previously seen best loss, use this as your new W

Complete random search

```
W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
loss = L(X_train, Y_train, W) # get the loss over the entire training set
if loss < bestloss: # keep track of the best solution
bestloss = loss
bestW = W</pre>
```

Local Random Search

- Each iteration pick a random direction to step in **W**
- If the loss is lower than the previously seen best loss, use this as your new W

Local Random Search

```
step_size = 0.0001
Wtry = W + np.random.randn(10, 3073) * step_size
loss = L(Xtr_cols, Ytr, Wtry)
if loss < bestloss:
    W = Wtry
    bestloss = loss</pre>
```

Gradient descent

- But we can do better!
- We know the **exact** direction of steepest descent
- It is the **negative** of the gradient

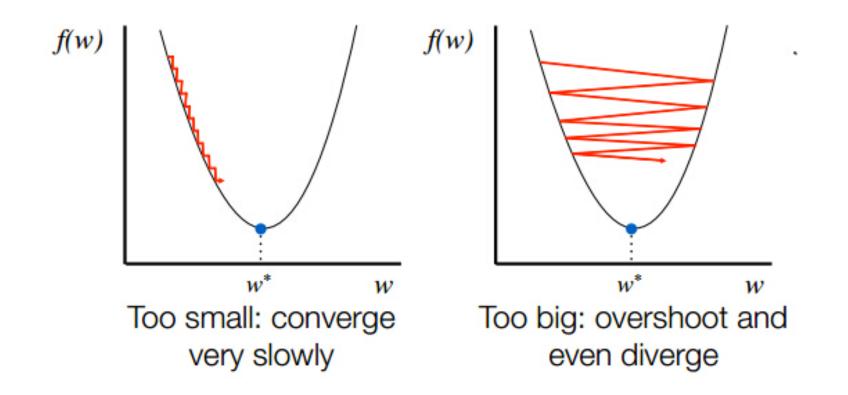
Numerical Gradient Descent

• Recall $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

- Calculate the numerical gradient in each direction
- This results in a vector of partial derivatives
- Update the weights according to steepest descent

W_new = W - step_size * df # new position in the weight space

Step Size



• Recall the probability and loss function derived earlier

$$p_k = \frac{e^{f_k}}{\sum_j e^{f_j}} \qquad \qquad L_i = -\log(p_{y_i})$$

• Differentiating wrt f_k

$$\frac{\partial L_i}{\partial f_k} = p_k - \mathbb{1}(y_i = k)$$

Analytical Gradient Descent

• Recall there's also a regularization term

$$L = \frac{1}{N} \sum_{i} L_{i} + \frac{1}{2} \lambda \sum_{k} \sum_{l} W_{k,l}^{2}$$

data loss regularization loss

• Differentiating wrt **w**

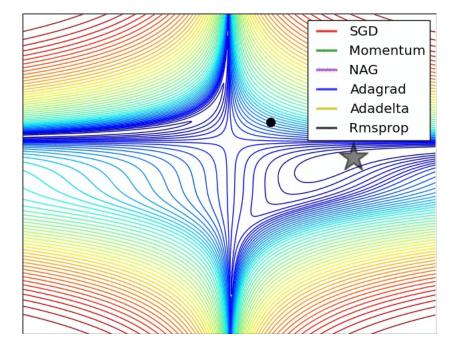
$$\frac{d}{dw}(\frac{1}{2}\lambda w^2) = \lambda w$$

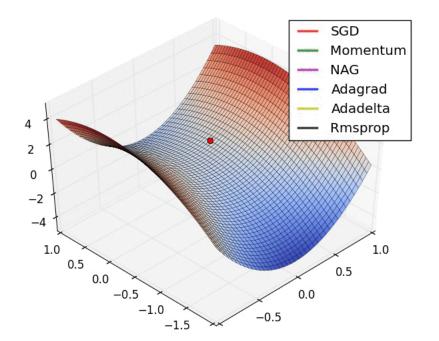
Putting it all together

• Open iPython notebook

https://cs.stanford.edu/people/karpathy/cs231nfiles/minimal_net.html

Step Size Revisited





Other notes

- In practice, don't perform the updates using all examples
- Do it in mini batches
- Works because samples are considered to be correlated
- **SGD** is extreme case of update per sample (online learning)
 - In practice SGD is still done in mini batches
- Batches are usually powers of 2: 32, 64, 128 etc.

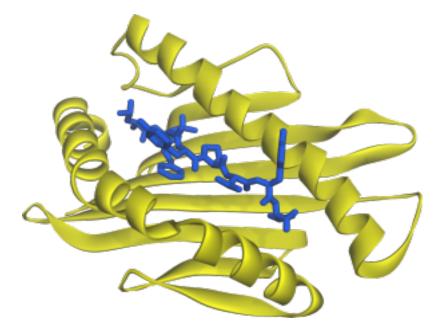
In Real Life (IRL)

Cancer Immunotherapy

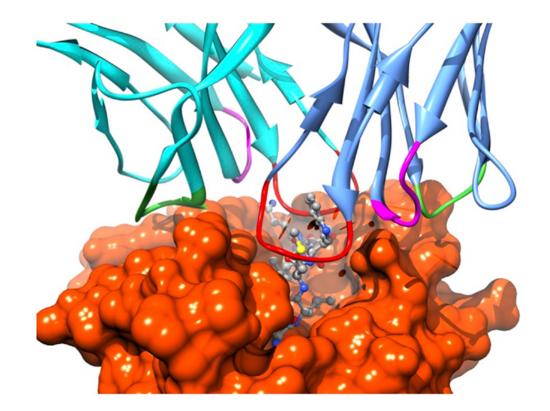
- Utilize the patient's immune system to fight the tumour
- Identify antigens from the tumour (neoantigens) that bind the patient's MHC molecules as being foreign (as a result of mutations)
- Result in an activation of an immune response against the tumour

Peptide-MHC binding

Binding of a peptide to an MHC molecule is the first critical step in the formation of an immune response



Peptide-MHC TCR complex

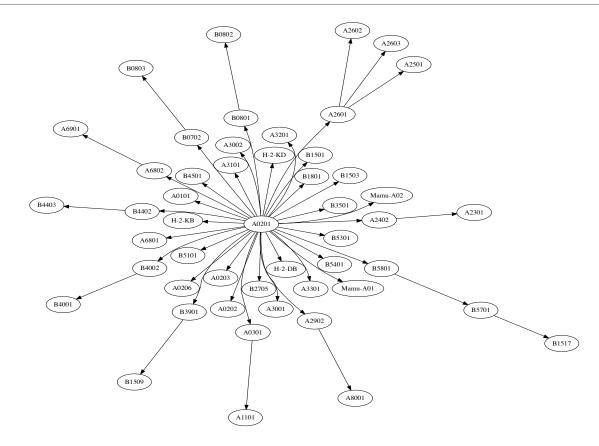


ZOETE ET AL, 2013

MHCnuggets

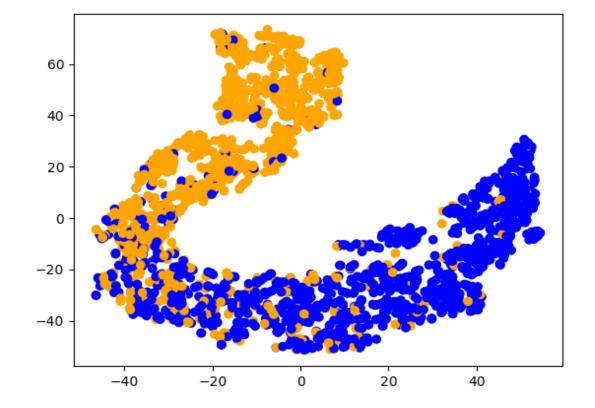
- One-hot encoded peptides
- Build a separate neural network for each MHC allele
- Each network is an LSTM layer of 64 units with an FC layer of 64 units stack on top
- Utilize a transfer learning protocol to generate better predictions for rare MHC alleles

Transfer learning



BHATTACHARYA ET AL, 2017

tSNE on feature space



Questions