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Abstract
Missing data has the potential to affect analyses
conducted in all fields of scientific study includ-
ing healthcare, economics, and the social sciences.
Several approaches to unbiased inference in the
presence of non-ignorable missingness rely on
the specification of the target distribution and its
missingness process as a probability distribution
that factorizes with respect to a directed acyclic
graph. In this paper, we address the longstanding
question of the characterization of models that are
identifiable within this class of missing data distri-
butions. We provide the first completeness result
in this field of study – necessary and sufficient
graphical conditions under which, the full data
distribution can be recovered from the observed
data distribution. We then simultaneously address
issues that may arise due to the presence of both
missing data and unmeasured confounding, by
extending these graphical conditions and proofs
of completeness, to settings where some variables
are not just missing, but completely unobserved.

1. Introduction
Missing data has the potential to affect analyses conducted
in all fields of scientific study, including healthcare, eco-
nomics, and the social sciences. Strategies to cope with
missingness that depends only on the observed data, known
as the missing at random (MAR) mechanism, are well-
studied (Dempster et al., 1977; Cheng, 1994; Robins et al.,
1994; Tsiatis, 2006). However, the setting where missing-
ness depends on covariates that may themselves be missing,
known as the missing not at random (MNAR) mechanism,
is substantially more difficult and under-studied (Fielding
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et al., 2008; Marston et al., 2010). MNAR mechanisms
are expected to occur quite often in practice, for example,
in longitudinal studies with complex patterns of dropout
and re-enrollment, or in studies where social stigma may
prompt non-response to questions pertaining to drug-use,
or sexual activity and orientation, in a way that depends on
other imperfectly collected or censored covariates (Robins
& Gill, 1997; Vansteelandt et al., 2007; Marra et al., 2017).

Previous work on MNAR models has proceeded by impos-
ing a set of restrictions on the full data distribution (the
target distribution and its missingness mechanism) that are
sufficient to yield identification of the parameter of interest.
While there exist MNAR models whose restrictions cannot
be represented graphically (Tchetgen Tchetgen et al., 2018),
the restrictions posed in several popular MNAR models such
as the permutation model (Robins & Gill, 1997), the block-
sequential MAR model (Zhou et al., 2010), the itemwise
conditionally independent nonresponse (ICIN) model (Sh-
pitser, 2016; Sadinle & Reiter, 2017), and those in (Daniel
et al., 2012; Thoemmes & Rose, 2013; Martel Garcı́a, 2013;
Mohan et al., 2013; Mohan & Pearl, 2014; Saadati & Tian,
2019) are either explicitly graphical or can be interpreted as
such.

Despite the popularity of graphical modeling approaches
for missing data problems, characterization of the class
of missing data distributions identified as functionals of
the observed data distribution has remained an open ques-
tion (Bhattacharya et al., 2019). Several algorithms for the
identification of the target distribution have been proposed
(Mohan & Pearl, 2014; Shpitser et al., 2015; Tian, 2017;
Bhattacharya et al., 2019). We show that even the most
general algorithm currently published (Bhattacharya et al.,
2019) still retains a significant gap in that there exist target
distributions that are identified which the algorithm fails
to identify. We then present what is, to our knowledge,
the first completeness result for missing data models repre-
sentable as directed acyclic graphs (DAGs) – a necessary
and sufficient graphical condition under which the full data
distribution is identified as a function of the observed data
distribution. For any given field of study, such a characteri-
zation is one of the most powerful results that identification
theory can offer, as it comes with the guarantee that if these
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conditions do not hold, the model is provably not identified.

We further generalize these graphical conditions to settings
where some variables are not just missing, but completely
unobserved. Such distributions are typically summarized
using acyclic directed mixed graphs (ADMGs) (Richardson
et al., 2017). We prove, once again, that our graphical cri-
teria are sound and complete for the identification of full
laws that are Markov relative to a hidden variable DAG and
the resulting summary ADMG. This new result allows us to
address two of the most critical issues in practical data anal-
yses simultaneously, those of missingness and unmeasured
confounding.

Finally, in the course of proving our results on completeness,
we show that the proposed graphical conditions also imply
that all missing data models of directed acyclic graphs or
acyclic directed mixed graphs that meet these conditions,
are in fact sub-models of the MNAR models in (Shpitser,
2016; Sadinle & Reiter, 2017). This simple, yet powerful
result implies that the joint density of these models may
be identified using an odds ratio parameterization that also
ensures congenial specification of various components of the
likelihood (Chen, 2007; Malinsky et al., 2019). Our results
serve as an important precondition for the development of
score-based model selection methods for graphical models
of missing data, as an alternative to the constraint-based
approaches proposed in (Strobl et al., 2018; Gain & Shpitser,
2018; Tu et al., 2019), and directly yield semi-parametric
estimators using results in (Malinsky et al., 2019).

2. Preliminaries
A directed acyclic graph (DAG) G(V ) consists of a set
of nodes V connected through directed edges such that
there are no directed cycles. We will abbreviate G(V ) as
simply G, when the vertex set is clear from the given con-
text. Statistical models of a DAG G are sets of distributions
that factorize as p(V ) =

∏
Vi∈V p(Vi | paG(Vi)), where

paG(Vi) are the parents of Vi in G. The absence of edges
between variables in G, relative to a complete DAG en-
tails conditional independence facts in p(V ). These can
be directly read off from the DAG G by the well-known
d-separation criterion (Pearl, 2009). That is, for disjoint
sets X,Y, Z, the following global Markov property holds:
(X ⊥⊥d-sep Y | Z)G =⇒ (X ⊥⊥ Y | Z)p(V ). When the
context is clear, we will simply use X ⊥⊥ Y | Z to denote
the conditional independence between X and Y given Z.

In practice, some variables on the DAG may be unmea-
sured or hidden. In such cases, the distribution p(V ∪ U) is
Markov relative to a hidden variable DAG G(V ∪U), where
variables in U are unobserved. There may be infinitely many
hidden variable DAGs that imply the same set of conditional
independences on the observed margin. Hence, it is typical

to utilize a single acyclic directed mixed graph (ADMG)
consisting of directed and bidirected edges that entails the
same set of equality constraints as this infinite class (Evans,
2018). Such an ADMG G(V ) is obtained from a hidden
variable DAG G(V ∪ U) via the latent projection operator
(Verma & Pearl, 1990) as follows. A → B exists in G(V )
if there exists a directed path from A to B in G(V ∪ U)
with all intermediate vertices in U. An edge A↔ B exists
in G(V ) if there exists a collider-free path (i.e., there are
no consecutive edges of the form→ ◦ ←) from A to B in
G(V ∪ U) with all intermediate vertices in U, such that the
first edge on the path is an incoming edge into A and the
final edge is an incoming edge into B.

Given a distribution p(V ∪ U) that is Markov relative to a
hidden variable DAG G(V,U), conditional independence
facts pertaining to the observed margin p(V ) can be read
off from the ADMG G(V ) by a simple analogue of the d-
separation criterion, known as m-separation (Richardson,
2003), that generalizes the notion of a collider to include
mixed edges of the form→ ◦ ↔,↔ ◦ ←, and↔ ◦ ↔ .

3. Missing Data Models
A missing data model is a set of distributions defined over a
set of random variables {O,X(1), R,X}, where O denotes
the set of variables that are always observed, X(1) denotes
the set of variables that are potentially missing, R denotes
the set of missingness indicators of the variables in X(1),
and X denotes the set of the observed proxies of the vari-
ables in X(1). By definition missingness indicators are bi-
nary random variables; however, the state space of variables
in X(1) and O are unrestricted. Given X(1)

i ∈ X(1) and its
corresponding missingness indicator Ri ∈ R, the observed
proxy Xi is defined as Xi ≡ X(1)

i if Ri = 1, and Xi =? if
Ri = 0. Hence, p(X | R,X(1)) is deterministically defined.
We call the non-deterministic part of a missing data distri-
bution, i.e, p(O,X(1), R), the full law, and partition it into
two pieces: the target law p(O,X(1)) and the missingness
mechanism p(R | X(1), O). The censored version of the
full law p(O,R,X), that the analyst actually has access to
is known as the observed data distribution.

Following the convention in (Mohan et al., 2013), let G(V )
be a missing data DAG, where V = {O ∪X(1) ∪R ∪X}.
In addition to acyclicity, edges of a missing data DAG are
subject to other restrictions: outgoing edges from variables
in R cannot point to variables in {X(1), O}, each Xi ∈ X
has only two parents in G, i.e., Ri and X(1)

i (these edges
represent the deterministic function above that defines Xi,
and are shown in gray in all the figures below), and there
are no outgoing edges from Xi (i.e., the proxy Xi does not
cause any variable on the DAG, however the corresponding
full data variable X(1)

i may cause other variables.) A miss-
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ing data model associated with a missing data DAG G is the
set of distributions p(O,X(1), R,X) that factorizes as,

∏
Vi∈O∪X(1)∪R

p(Vi | paG(Vi))
∏

Xi∈X

p(Xi | X(1)
i , Ri).

By standard results on DAG models, conditional indepen-
dences in p(X(1), O,R) can still be read off from G by the d-
separation criterion (Pearl, 2009). For convenience, we will
drop the deterministic terms of the form p(Xi | X(1)

i , Ri)
from the identification analyses in the following sections
since these terms are always identified by construction.

As an extension, we also consider a hidden variable DAG
G(V ∪U), where V = {O,X(1), R,X} and variables in U
are unobserved, to encode missing data models in the pres-
ence of unmeasured confounders. In such cases, the full law
would obey the nested Markov factorization (Richardson
et al., 2017) with respect to a missing data ADMG G(V ),
obtained by applying the latent projection operator (Verma
& Pearl, 1990) to the hidden variable DAG G(V ∪ U). As
a result of marginalization of latents U, there might exist
bi-directed edges (to encode the hidden common causes)
between variables in V (bi-directed edges are shown in red
in all the figures below). It is straightforward to see that a
missing data ADMG obtained via projection of a hidden
variable missing data DAG follows the exact same restric-
tions as stated in the previous paragraph (i.e., no directed
cycles, paG(Xi) = {X(1)

i , Ri}, every Xi ∈ X is childless,
and there are no outgoing edges from Ri to any variables in
{X(1), O}.)

3.1. Identification in Missing Data Models

The goal of non-parametric identification in missing
data models is twofold: identification of the target law
p(O,X(1)) or functions of it f(p(O,X(1))), and identifica-
tion of the full law p(O,X(1), R), in terms of the observed
data distribution p(O,R,X).

A compelling reason to study the problem of identification
of the full law in and of itself, is due to the fact that many
popular methods for model selection or causal discovery,
rely on the specification of a well-defined and congenial
joint distribution (Chickering, 2002; Ramsey, 2015; Ogar-
rio et al., 2016). A complete theory of the characterization
of missing data full laws that are identified opens up the
possibility of adapting such methods to settings involving
non-ignorable missingness, in order to learn not only sub-
stantive relationships between variables of interest in the
target distribution, but also the processes that drive their
missingness. This is in contrast to previous approaches to
model selection under missing data that are restricted to
submodels of a single fixed identified model (Strobl et al.,
2018; Gain & Shpitser, 2018; Tu et al., 2019). Such an

assumption may be impractical in complex healthcare set-
tings, for example, where discovering the factors that lead
to missingness or study-dropout may be just as important as
discovering substantive relations in the underlying data.

Though the focus of this paper is on identification of the
full law of missing data models that can be represented by
a DAG (or a hidden variable DAG), some of our results
naturally extend to identification of the target law (and func-
tionals therein) due to the fact that the target law can be
derived from the full law as

∑
R p(O,X

(1), R).
Remark 1. By chain rule of probability, the target law
p(O,X(1)) is identified if and only if p(R = 1 | O,X(1))
is identified. The identifying functional is given by

p(O,X(1)) =
p(O,X(1), R = 1)

p(R = 1 | O,X(1))
.

(the numerator is a function of observed data by noting that
X(1) = X , and is observed when R = 1).

Remark 2. The full law p(O,X(1), R) is identified if and
only if p(R | O,X(1)) is identified. According to Remark 1,
the identifying functional is given by

p(O,X(1), R) =
p(O,X(1), R = 1)

p(R = 1 | O,X(1))
× p(R | O,X(1)).

The rest of the paper is organized as follows. In Section 4,
we explain, through examples, why none of the existing
identification algorithms put forward in the literature are
complete in the sense that there exist missing data DAGs
whose full law and target law are identified but these al-
gorithms fail to derive an identifying functional for them.
In Section 5, we provide a complete algorithm for full law
identification. In Section 6, we further extend our identifica-
tion results to models where unmeasured confounders are
present. We defer all proofs to the Appendix.

4. Incompleteness of Current Methods
In this section, we show that even the most general methods
proposed for identification in missing data DAG models
remain incomplete. In other words, we show that there exist
identified MNAR models that are representable by DAGs,
however all existing algorithms fail to identify both the
full and target law for these models. For brevity, we use
the procedure proposed in (Bhattacharya et al., 2019) as an
exemplar. However, as it is the most general procedure in the
current literature, failure to identify via this procedure would
imply failure by all other existing ones. For each example,
we also provide alternate arguments for identification that
eventually lead to the general theory in Sections 5 and 6.

The algorithm proposed by (Bhattacharya et al., 2019)
proceeds as follows. For each missingness indica-
tor Ri, the algorithm tries to identify the distribution
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p(Ri|paG(Ri))|R=1, sometimes referred to as the propen-
sity score ofRi. It does so by checking ifRi is conditionally
independent (given its parents) of the corresponding miss-
ingness indicators of its parents that are potentially missing.
If this is the case, the propensity score is identified by a
simple conditional independence argument (d-separation).
Otherwise, the algorithm checks if this condition holds in
post-fixing distributions obtained through recursive appli-
cation of the fixing operator, which roughly corresponds to
inverse weighting the current distribution by the propensity
score of the variable being fixed (Richardson et al., 2017)
(a more formal definition is provided in the Appendix.) If
the algorithm succeeds in identifying the propensity score
for each missingness indicator in this manner, then it suc-
ceeds in identifying the target law as Remark 1 suggests,
since p(R = 1|O,X(1)) =

∏
Ri∈R p(Ri|paG(R))|R=1.

Additionally, if it is the case that in the course of execution,
the propensity score p(Ri|paG(Ri)) for each missingness
indicator is also identified at all levels of its parents, then
the algorithm also succeeds in identifying the full law (due
to Remark 2).

In order to ground our theory in reality, we now describe a
series of hypotheses that may arise during the course of a
data analysis that seeks to study the link between the effects
of smoking on bronchitis, through the deposition of tar or
other particulate matter in the lungs. For each hypothesis,
we ask if the investigator is able to evaluate the goodness of
fit of the proposed model, typically expressed as a function
of the full data likelihood, as a function of just the observed
data. In other words, we ask if the full law is identified
as a function of the observed data distribution. If it is,
this enables the analyst to compare and contrast different
hypotheses and select one that fits the data the best.

Setup. To start, the investigator consults a large observa-
tional database containing the smoking habits, measure-
ments of particulate matter in the lungs, and results of di-
agnostic tests for bronchitis on individuals across a city.
She notices however, that several entries in the database are
missing. This leads her to propose a model like the one
shown in Fig. 1(a), where X(1)

1 , X
(1)
2 , and X(1)

3 correspond
to smoking, particulate matter, and bronchitis respectively,
and R1, R2, and R3 are the corresponding missingness in-
dicators.

For the target distribution p(X(1)), she proposes a simple
mechanism that smoking leads to increased deposits of tar
in the lungs, which in turn leads to bronchitis (X(1)

1 →
X

(1)
2 → X

(1)
3 ). For the missingness process, she pro-

poses that a suspected diagnosis of bronchitis is likely to
lead to an inquiry about the smoking status of the patient
(X(1)

3 → R1), smokers are more likely to get tested for tar
and bronchitis (X(1)

1 → R2, X
(1)
1 → R3), and ordering a

diagnostic test for bronchitis, increases the likelihood of

X
(1)
1 X

(1)
2 X

(1)
3

R1 R2 R3

X1 X2 X3

(a) Ga

X1 X
(1)
2 X

(1)
3

R1 = 1 R2 R3 = 1

X2 X3

(b) Gb := Ga(V \R1)

Figure 1. (a) The missing data DAG used in scenario 1 (without
the dashed edge X(1)

2 → R3) and scenario 2 (with the dashed edge
X

(1)
2 → R3) (b) Conditional DAG corresponding to the missing

data DAG in (a) after fixing R1, i.e., inverse weighting by the
propensity score of R1.

ordering a test for tar, which in turn increases the likelihood
of inquiry about smoking status (R1 ← R2 ← R3).

We now show that for this preliminary hypothesis, if the
investigator were to utilize the procedure described in (Bhat-
tacharya et al., 2019) she may conclude that it is not possible
to identify the full law. We go on to show that such a conclu-
sion would be incorrect, as the full law is, in fact, identified,
and provide an alternative means of identification.

Scenario 1. Consider the missing data DAG model in
Fig. 1(a) by excluding the edge X(1)

2 → R3, corresponding
to the first hypothesis put forth by the investigator. The
propensity score for R1 can be obtained by simple condi-
tioning, noting that R1 ⊥⊥ R3 | X(1)

3 , R2 by d-separation.
Hence, p(R1 | paG(R1)) = p(R1 | X(1)

3 , R2) = p(R1 |
X3, R2, R3 = 1).

Conditioning is not sufficient in order to identify the propen-
sity score for R2, as R2 6⊥⊥ R1 | X(1)

1 , R3. However, it can
be shown that in the distribution q(V \ R1 | R1 = 1) ≡

p(V )
p(R1=1|paG(R1))

, R2 ⊥⊥ R1 | X1, R3 = 1, since this distri-
bution is Markov relative to the graph in Fig. 1(b) (see the
Appendix for details). We use the notation q(· | ·) to indicate
that while q acts in most respects as a conditional distribu-
tion, it was not obtained from p(V ) by a conditioning opera-
tion. This implies that the propensity score forR2 (evaluated
at R = 1) is identified as q(R2 | X1, R3 = 1, R1 = 1).

Finally, we show that the algorithm in (Bhattacharya et al.,
2019) is unable to identify the propensity score for R3.

We first note that R3 6⊥⊥ R1 | X(1)
1 in the original prob-

lem. Furthermore, as shown in Fig. 1(b), fixing R1 leads
to a distribution where R3 is necessarily selected on as the
propensity score p(R1 | paG(R1)) is identified by restrict-
ing the data to cases where R3 = 1. It is thus impossible to
identify the propensity score for R3 in this post-fixing distri-
bution. The same holds if we try to fix R2 as identification
of the propensity score for R2 required us to first fix R1,
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which we have seen introduces selection bias on R3.

Hence, the procedure in (Bhattacharya et al., 2019) fails to
identify both the target law and the full law for the problem
posed in Fig. 1(a). However, both these distributions are, in
fact, identified as we now demonstrate.

A key observation is that even though the identification
of p(R3 | X(1)

1 ) might not be so straightforward, p(R3 |
X

(1)
1 , R2) is indeed identified, because by d-separation

R3 ⊥⊥ R1 | X(1)
1 , R2, and therefore p(R3 | X(1)

1 , R2) =

p(R3 | X1, R2, R1 = 1). Given that p(R3 | X(1)
1 , R2)

and p(R2 | X(1)
1 , R3 = 1) are both identified (the latter

is obtained through as described earlier), we consider ex-
ploiting an odds ratio parameterization of the joint density
p(R2, R3 | paG(R2, R3)) = p(R2, R3 | X(1)

1 ). As we
show below, such a parameterization immediately implies
the identifiability of this density and consequently, the indi-
vidual propensity scores for R2 and R3.

Given disjoint sets of variables A,B,C and reference val-
ues A = a0, B = b0, the odds ratio parameterization of
p(A,B | C), given in (Chen, 2007), is as follows:

1

Z
× p(A | b0, C)× p(B | a0, C)× OR(A,B | C), (1)

where

OR(A = a,B = b | C)

=
p(A = a | B = b, C)

p(A = a0 | B = b, C)
× p(A = a0 | B = b0, C)

p(A = a | B = b0, C)
,

and Z is the normalizing term and is equal to∑
A,B

p(A | B = b0, C)× p(B | A = a0, C)× OR(A,B | C).

Note that OR(A,B | C) = OR(B,A | C), i.e., the odds ra-
tio is symmetric; see (Chen, 2007).

A convenient choice of reference value for the odds ratio
in missing data problems is the value Ri = 1. Given this
reference level and the parameterization of the joint in Eq.
(1), we know that p(R2, R3 | X(1)

1 ) = 1
Z
× p(R2 | R3 =

1, X
(1)
1 )× p(R3 | R2 = 1, X

(1)
1 )× OR(R2, R3 | X(1)

1 ), where
Z is the normalizing term, and

OR(R2 = r2, R3 = r3 | X(1)
1 )

=
p(R3 = r3 | R2 = r2, X

(1)
1 )

p(R3 = 1 | R2 = r2, X
(1)
1 )

× p(R3 = 1 | R2 = 1, X
(1)
1 )

p(R3 = r3 | R2 = 1, X
(1)
1 )

.

The conditional pieces p(R2 | R3 = 1, X
(1)
1 ) and p(R3 |

R2 = 1, X
(1)
1 ) are already shown to be functions of the

observed data. To see that the odds ratio is also a function of
observables, recall that R3 ⊥⊥ R1 | R2, X

(1)
1 . This means

that R1 = 1 can be introduced into each individual piece
of the odds ratio functional above, making it so that the
entire functional depends only on observed quantities. Since
all pieces of the odds ratio parameterization are identified
as functions of the observed data, we can conclude that
p(R2, R3 | X(1)

1 ) is identified as the normalizing term is
always identified if all the conditional pieces and the odds
ratio are identified. This result, in addition to the fact that
p(R1 | R2, X

(1)
3 ) is identified as before, leads us to the

identification of both the target law and the full law, as the
missingness process p(R | X(1)) is identified.

Scenario 2. Suppose the investigator is interested in testing
an alternate hypothesis to see whether detecting high levels
of particulate matter in the lungs, also serves as an indicator
to physicians that a diagnostic test for bronchitis should be
ordered. This corresponds to the missing data DAG model
in Fig. 1(a) by including the edge X(1)

2 → R3. Since this is
a strict super model of the previous example, the procedure
in (Bhattacharya et al., 2019) still fails to identify the target
and full laws in a similar manner as before.

However, it is still the case that both the target and full laws
are identified. The justification for why the odds ratio param-
eterization of the joint density p(R2, R3 | paG(R2, R3)) =

p(R2, R3 | X(1)
1 , X

(1)
2 ) is identified in this scenario, is more

subtle. We have,

p(R2, R3 | X(1)
1 , X

(1)
2 ) =

1

Z
× p(R2 | R3 = 1, X

(1)
1 , X

(1)
2 )

× p(R3 | R2 = 1, X
(1)
1 , X

(1)
2 )× OR(R2, R3 | X(1)

1 , X
(1)
2 ).

Note that R2 ⊥⊥ X
(1)
2 | R3, X

(1)
1 , and R3 ⊥⊥ R1 |

R2, X
(1)
1 , X

(1)
2 . Therefore, p(R2 | R3 = 1, X

(1)
1 , X

(1)
2 ) =

p(R2 | R3 = 1, X
(1)
1 ) is identified the same way as de-

scribed in Scenario 1, and p(R3 | R2 = 1, X
(1)
1 , X

(1)
2 ) =

p(R3 | R1 = 1, R2 = 1, X1, X2) is a function of the ob-
served data and hence is identified. Now the identification
of the joint density p(R2, R3 | X(1)

1 , X
(1)
2 ) boils down to

identifiability of the odds ratio term. By symmetry, we
can express the odds ratio OR(R2, R3 | X(1)

1 , X
(1)
2 ) in two

different ways,

OR(R2, R3 | X(1)
1 , X

(1)
2 )

=
p(R2 | R3, X

(1)
1 )

p(R2 = 1 | R3, X
(1)
1 )
× p(R2 = 1 | R3 = 1, X

(1)
1 )

p(R2 | R3 = 1, X
(1)
1 )

=
p(R3|R2, X

(1)
1 , X

(1)
2 )

p(R3 = 1|R2, X
(1)
1 , X

(1)
2 )
× p(R3 = 1|R2 = 1, X

(1)
1 , X

(1)
2 )

p(R3|R2 = 1, X
(1)
1 , X

(1)
2 )

.

The first equality holds by d-separation (R2 ⊥⊥ X
(1)
2 |

R3, X
(1)
1 ). This implies that OR(R2, R3 | X(1)

1 , X
(1)
2 )
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is not a function of X(1)
2 . Let us denote this functional

by f1(R2, R3, X
(1)
1 ). On the other hand, we can plug-in

R1 = 1 to pieces in the second equality since R3 ⊥
⊥ R1 | R2, X

(1)
1 , X

(1)
2 (by d-separation.) This implies

that OR(R2, R3 | X(1)
1 , X

(1)
2 ) is a function of X(1)

1 only
through its observed values (i.e. X1). Let us denote this
functional by f2(R2, R3, X1, X

(1)
2 , R1 = 1). Since odds

ratio is symmetric (by definition), then it must be the case
that f1(R2, R3, X

(1)
1 ) = f2(R2, R3, X1, X

(1)
2 , R1 = 1);

concluding that f2 cannot be a function of X(1)
2 , as the left

hand side of the equation does not depend on X(1)
2 . This

renders f2 to be a function of only observed quantities, i.e.
f2 = f2(R2, R3, X1, R1 = 1). This leads to the conclusion
that p(R2, R3 | X(1)

1 , X
(1)
2 ) is identified and consequently

the missingness process p(R | X(1)) in Fig. 1(a) is identi-
fied. According to Remarks 1 and 2, both the target and full
laws are identified.

Adding any directed edge to Fig. 1(a) (including the dashed
edge) allowed by missing data DAGs results in either a
self-censoring edge (X(1)

i → Ri) or a special kind of col-
lider structure called the colluder (X(1)

j → Ri ← Rj) in
(Bhattacharya et al., 2019). We discuss in detail, the link
between identification of missing data models of a DAG and
the absence of these structures in Section 5.

Scenario 3. So far, the investigator has conducted prelim-
inary analyses of the problem while ignoring the issue of
unmeasured confounding. In order to address this issue, she
first posits an unmeasured confounder U1, corresponding
to genotypic traits that may predispose certain individuals
to both smoke and develop bronchitis. She posits another
unmeasured confounder U2, corresponding to the occupa-
tion of an individual, that may affect both the deposits of
tar found in their lungs (for e.g., construction workers may
accumulate more tar than an accountant due to occupational
hazards) as well as limit an individual’s access to proper
healthcare, leading to the absence of a diagnostic test for
bronchitis.

The missing data DAG with unmeasured confounders, cor-
responding to the aforementioned hypothesis is shown in
Fig. 2(a) (excluding the dashed edges). The corresponding
missing data ADMG, obtained by latent projection is shown
in Fig. 2(b) (excluding the dashed bidirected edge). A pro-
cedure to identify the full law of such an MNAR model, that
is nested Markov with respect to a missing data ADMG, is
absent from the current literature. The question that arises,
is whether it is possible to adapt the odds ratio parameteri-
zation from the previous scenarios, to this setting.

We first note that by application of the chain rule of prob-
ability and Markov restrictions, the missingness mecha-
nism still factorizes in the same way as in Scenario 2, i.e.,

X
(1)
1 X

(1)
2 X

(1)
3

R1 R2 R3

X1 X2 X3

U1 U3 U2

(a) G(V,U)

X
(1)
1 X

(1)
2 X

(1)
3

R1 R2 R3

X1 X2 X3

(b) G(V )

Figure 2. (a) The missing data DAG with unobserved confounders
used in scenario 3 (without the dashed edges) and scenario 4 (with
the dashed edges). (b) The corresponding missing data ADMGs
obtained by applying the latent projection rules to the hidden
variable DAG in (a).

p(R | X(1)) = p(R1 | R2, X
(1)
3 )×p(R2, R3 | X(1)

1 , X
(1)
2 )

(Tian & Pearl, 2002). Despite the addition of the bidirected
edges X(1)

1 ↔ X
(1)
3 and X(1)

2 ↔ R3, corresponding to
unmeasured confounding, it is easy to see that the propen-
sity score for R1 is still identified via simple conditioning.
That is, p(R1 | paG(R1)) = p(R1 | X3, R2, R3 = 1) as
R1 ⊥⊥ R3 | X(1)

3 , R2 by m-separation. Furthermore, it can
also be shown that the two key conditional independences
that were exploited in the odds ratio parameterization of
p(R2, R3 | X(1)), still hold in the presence of these addi-
tional edges. In particular, R2 ⊥⊥ X

(1)
2 | R3, X

(1)
1 , and

R3 ⊥⊥ R1 | R2, X
(1)
1 , X

(1)
2 , by m-separation. Thus, the

same odds ratio parameterization used for identification of
the full law in Scenario 2, is also valid for Scenario 3. The
full odds ratio parameterization of the MNAR models in
Scenarios 2 and 3 is provided in Appendix B.

Scenario 4. Finally, the investigator notices that a dispro-
portionate number of missing entries for smoking status and
diagnosis of bronchitis, correspond to individuals from cer-
tain neighborhoods in the city. She posits that such missing-
ness may be explained by systematic biases in the healthcare
system, where certain ethnic minorities may not be treated
with the same level of care. This corresponds to adding a
third unmeasured confounder U3, which affects the ordering
of a diagnostic test for bronchitis as well as inquiry about
smoking habits, as shown in Fig. 2(a) (including the dashed
edges.) The corresponding missing data ADMG is shown
in Fig. 2(b) (including the bidirected dashed edge.) Once
again, we investigate if the full law is identified, in the pres-
ence of an additional unmeasured confounder U3, and the
corresponding bidirected edge R1 ↔ R3.

The missingness mechanism p(R | X(1)) in Fig. 2(b) (in-
cluding the dashed edge) no longer follows the same fac-
torization as the one described in Scenarios 2 and 3, due to
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the presence of a direct connection between R1 and R3. Ac-
cording to (Tian & Pearl, 2002), this factorization is given
as p(R | X(1)) = p(R1 | R2, R3, X

(1)
1 , X

(1)
2 , X

(1)
3 ) ×

p(R2 | R3, X
(1)
1 ) × p(R3 | X(1)

1 , X
(1)
2 ). Unlike the

previous scenarios, the propensity score of R1, p(R1 |
R2, R3, X

(1)
1 , X

(1)
2 , X

(1)
3 ), includes X(1)

1 , X
(1)
2 , and R3

past the conditioning bar. Thus, the propensity score of
R1 seems to be not identified, since there is no clear way of
breaking down the dependency between R1 and X(1)

1 . The
problematic structure is the path X(1)

1 → R3 ↔ R1 which
contains a collider at R3 that opens up when we condition
on R3 in the propensity score of R1.

In light of the discussion in previous scenarios, another
possibility for identifying p(R | X(1)) is through analysis
of the odds ratio parameterization of the entire missingness
mechanism. In Section 5, we provide a description of the
general odds ratio parameterization on an arbitrary number
of missingness indicators. For brevity, we avoid re-writing
the formula here. We simply point out that the first step in
identifying the missingness mechanism via the odds ratio
parameterization is arguing whether conditional densities of
the form p(Ri | R \Ri = 1, X(1)) are identified, which is
true if Ri ⊥⊥ X(1)

i | R \Ri, X
(1) \X(1)

i .

Such independencies do not hold in Fig. 2(b) (including
the dashed edge) for any of the Rs, since there exist col-
lider paths between every pair (X(1)

i , Ri) that render the
two variables dependent when we condition on everything
outsideX(1)

i , Ri (by m-separation). Examples of such paths
are X(1)

1 → R3 ↔ R1 and X(1)
2 ↔ R3 ↔ R1 ← R2 and

X
(1)
3 → R1 ↔ R3.

In Section 6, we show that the structures arising in the
missing data ADMG presented in Fig. 2(b) (including the
dashed edge), give rise to MNAR models that are provably
not identified without further assumptions.

5. Full Law Identification in DAGs
(Bhattacharya et al., 2019) proved that two graphical struc-
tures, namely the self-censoring edge (X(1)

i → Ri) and the
colluder (X(1)

j → Ri ← Rj), prevent the identification of
full laws in missing data models of a DAG. In this section
we exploit an odds ratio parameterization of the missing
data process to prove that these two structures are, in fact,
the only structures that prevent identification, thus yielding
a complete characterization of identification for the full law
in missing data DAG models.

We formally introduce the odds ratio parameterization of
the missing data process introduced in (Chen, 2007), as a
more general version of the simpler form mentioned earlier
in Eq. (1). Assuming we have K missingness indicators,

p(R | X(1), O) can be expressed as follows.

p(R | X(1), O) =
1

Z
×

K∏
k=1

p(Rk | R−k = 1, X(1), O)

×
K∏

k=2

OR(Rk, R≺k | R�k = 1, X(1), O), (2)

where R−k = R \ Rk, R≺k = {R1, . . . , Rk−1}, R�k =
{Rk+1, . . . , RK}, and

OR(Rk, R≺k | R�k = 1, X(1), O)

=
p(Rk | R�k = 1, R≺k, X

(1), O)

p(Rk = 1 | R�k = 1, R≺k, X(1), O)

× p(Rk = 1 | R−k = 1, X(1), O)

p(Rk | R−k = 1, X(1), O)
.

Z in Eq. (2) is the normalizing term and is equal to∑
r{
∏K

k=1 p(rk | R−k = 1, X(1), O) ×
∏K

k=2 OR(rk, r≺k |
R�k = 1, X(1), O)}.

Using the odds ratio reparameterization given in Eq. (2),
we now show that under a standard positivity assumption,
stating that p(R | X(1), O) > δ > 0, with probability one
for some constant δ, the full law p(R,X(1), O) of a missing
data DAG is identified in the absence of self-censoring edges
and colluders. Moreover, if any of these conditions are
violated, the full law is no longer identified. We formalize
this result below.

Theorem 1. A full law p(R,X(1), O) that is Markov rel-
ative to a missing data DAG G is identified if G does not
contain edges of the form X

(1)
i → Ri (no self-censoring)

and structures of the form X
(1)
j → Ri ← Rj (no colluders),

and the stated positivity assumption holds. Moreover, the re-
sulting identifying functional for the missingness mechanism
p(R | X(1), O) is given by the odds ratio parameterization
provided in Eq. 2, and the identifying functionals for the
target law and full law are given by Remarks 1 and 2.

In what follows, we show that the identification theory that
we have proposed for the full law in missing data models
of a DAG is sound and complete. Soundness implies that
when our procedure succeeds, the model is in fact identified,
and the identifying functional is correct. Completeness
implies that when our procedure fails, the model is provably
not identified (non-parametrically). These two properties
allow us to derive a precise boundary for what is and is not
identified in the space of missing data models that can be
represented by a DAG.

Theorem 2. The graphical condition of no self-censoring
and no colluders, put forward in Theorem 1, is sound and
complete for the identification of full laws p(R,O,X(1))
that are Markov relative to a missing data DAG G.
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X
(1)
i

Rj · · · Rk Ri

X
(1)
i

Rj · · · X
(1)
k

Ri

X
(1)
i X

(1)
j

· · · Rk Ri

X
(1)
i X

(1)
j

· · · X
(1)
k

Ri

Figure 3. All possible colluding paths between X
(1)
i and Ri. Each

pair of dashed edges imply that the presence of either (or both)
result in formation of a colluding path.

We now state an important result that draws a connection
between missing data models of a DAG G that are devoid
of self-censoring and colluders, and the itemwise condition-
ally independent nonresponse (ICIN) model described in
(Shpitser, 2016; Sadinle & Reiter, 2017). As a substantive
model, the ICIN model implies that no partially observed
variable directly determines its own missingness, and is de-
fined by the restrictions that for every pair X(1)

i , Ri, it is the
case that X(1)

i ⊥⊥ Ri | R−i, X(1)
−i , O. We utilize this result

in the course of proving Theorem 2.

Lemma 1. A missing data model of a DAG G that contains
no self-censoring edges and no colluders, is a submodel of
the ICIN model.

6. Full Law Identification in the Presence of
Unmeasured Confounders

We now generalize identification theory of the full law to
scenarios where some variables are not just missing, but
completely unobserved, corresponding to the issues faced
by the analyst in Scenarios 3 and 4 of Section 4. That is, we
shift our focus to the identification of full data laws that are
(nested) Markov with respect to a missing data ADMG G.

Previously, we exploited the fact that the absence of col-
luders and self-censoring edges in a missing data DAG G,
imply a set of conditional independence restrictions of the
form X

(1)
i ⊥⊥ Ri | R−i, X(1)

−i , O, for any pair X(1)
i ∈ X(1)

and Ri ∈ R (see Lemma 1). We now describe necessary
and sufficient graphical conditions that must hold in a miss-
ing data ADMG G to imply this same set of conditional
independences. Going forward, we ignore (without loss of
generality), the deterministic factors p(X | X(1), R), and
the corresponding deterministic edges in G, in the process
of defining this graphical criterion.

A colliding path between two vertices A and B is a path on
which every non-endpoint node is a collider. We adopt the

convention that A → B and A ↔ B are trivially collider
paths. We say there exists a colluding path between the pair
(X

(1)
i , Ri) if X(1)

i and Ri are connected through at least
one non-deterministic colliding path i.e., one which does
not pass through (using deterministic edges) variables in X.

We enumerate all possible colluding paths between a vertex
X

(1)
i and its corresponding missingness indicator Ri in

Fig. 3. Note that both the self-censoring structure and the
colluding structure introduced in (Bhattacharya et al., 2019)
are special cases of a colluding path. Using the m-separation
criterion for ADMGs, it is possible to show that a missing
data model of an ADMG G that contains no colluding paths
of the form shown in Fig. 3, is also a submodel of the ICIN
model in (Shpitser, 2016; Sadinle & Reiter, 2017).

Lemma 2. A missing data model of an ADMG G that con-
tains no colluding paths is a submodel of the ICIN model.

This directly yields a sound criterion for identification of
the full law of missing data models of an ADMG G using
the odds ratio parameterization as before.

Theorem 3. A full law p(R,X(1), O) that is Markov rela-
tive to a missing data ADMG G is identified if G does not
contain any colluding paths and the stated positivity assump-
tion in Section 5 holds. Moreover, the resulting identifying
functional for the missingness mechanism p(R | X(1), O)
is given by the odds ratio parametrization provided in Eq. 2.

We now address the question as to whether there exist miss-
ing data ADMGs which contain colluding paths but whose
full laws are nevertheless identified. We show (see Appendix
for proofs), that the presence of a single colluding path of
any of the forms shown in Fig. 3, results in a missing data
ADMG G whose full law p(X(1), R,O) cannot be identified
as a function of the observed data distribution p(X,R,O).

Lemma 3. A full law p(R,X(1), O) that is Markov relative
to a missing data ADMG G containing a colluding path
between any pair X(1)

i ∈ X(1) and Ri ∈ R is not identified.

Revisiting our example in scenario 4, we note that every
(Ri, X

(1)
i ) pair is connected through at least one collud-

ing path. Therefore, according to Lemma 3, the full law
in Fig. 2(a) including the dashed edge, is not identified.
It is worth emphasizing that the existence of at least one
colluding path between any pair (Ri, X

(1)
i ) is sufficient to

conclude that the full law is not identified.

In what follows, we present a result on the soundness and
completeness of our graphical condition that represents a
powerful unification of non-parametric identification theory
in the presence of non-ignorable missingness and unmea-
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sured confounding. To our knowledge, such a result is the
first of its kind. We present the theorem below.

Theorem 4. The graphical condition of the absence of col-
luding paths, put forward in Theorem 3, is sound and com-
plete for the identification of full laws p(X(1), R,O) that
are Markov relative to a missing data ADMG G.

Throughout the paper, we have focused on identification of
the full law which, according to Remark 1, directly yields
identification for the target law. However, identification of
the full law is a sufficient but not necessary condition for
identification of the target law. In other words, the target
law may still be identified despite the presence of colluding
paths. Fig. 4(a) in (Bhattacharya et al., 2019) is an example
of such a case where the full law is not identified due to the
colluder structure at R2; however, as the authors argue the
target law remains identified.

7. Conclusion
In this paper, we concluded an important chapter in the
non-parametric identification theory of missing data models
represented via directed acyclic graphs, possibly in the pres-
ence of unmeasured confounders. We provided a simple
graphical condition to check if the full law, Markov relative
to a (hidden variable) missing data DAG, is identified. We
further proved that these criteria are sound and complete.
Moreover, we provided an identifying functional for the
missingness process, through an odds ratio parameterization
that allows for congenial specification of components of the
likelihood. Our results serve as an important precondition
for the development of score-based model selection methods
that consider a broader class of missing data distributions
than the ones considered in prior works. An interesting av-
enue for future work is exploration of the estimation theory
of functionals derived from the identified full data law. To
conclude, we note that while identification of the full law
is sufficient to identify the target law, there exist identified
target laws where the corresponding full law is not iden-
tified. We leave a complete characterization of target law
identification to future work.
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