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ABSTRACT
◥

Computational prediction of binding between neoantigen pep-
tides andmajor histocompatibility complex (MHC) proteins can be
used to predict patient response to cancer immunotherapy. Current
neoantigen predictors focus on in silico estimation of MHC binding
affinity and are limited by low predictive value for actual peptide
presentation, inadequate support for rare MHC alleles, and poor
scalability to high-throughput data sets. To address these limita-
tions, we developed MHCnuggets, a deep neural network method
that predicts peptide–MHC binding. MHCnuggets can predict
binding for common or rare alleles of MHC class I or II with a
single neural network architecture. Using a long short-term mem-
ory network (LSTM), MHCnuggets accepts peptides of variable
length and is faster than other methods. When compared with
methods that integrate binding affinity and MHC-bound peptide

(HLAp) data frommass spectrometry, MHCnuggets yields a 4-fold
increase in positive predictive value on independentHLAp data.We
applied MHCnuggets to 26 cancer types in The Cancer Genome
Atlas, processing 26.3 million allele–peptide comparisons in under
2.3 hours, yielding 101,326 unique predicted immunogenic mis-
sense mutations (IMM). Predicted IMM hotspots occurred in
38 genes, including 24 driver genes. Predicted IMM load was
significantly associated with increased immune cell infiltration
(P < 2 � 10�16), including CD8þ T cells. Only 0.16% of predicted
IMMs were observed in more than 2 patients, with 61.7% of these
derived from driver mutations. Thus, we describe a method for
neoantigen prediction and its performance characteristics and
demonstrate its utility in data sets representing multiple human
cancers.

Introduction
The presentation of peptides bound to major histocompatibility

complex (MHC) proteins on the surface of antigen-presenting
cells and subsequent recognition by T-cell receptors is fundamental
to the mammalian adaptive immune system. Neoantigens
derived from somatic mutations are targets of immunoediting

and drive therapeutic responses in cancer patients treated with
immunotherapy (1, 2). Because experimental characterization of
neoantigens is both costly and time-consuming, computational
methods have been developed to predict peptide–MHC binding
and subsequent immune response (3, 4). Supervised neural network
machine learning approaches have performed the best (5–7) and are
the most widely used in silico methods. Despite advances in
computational approaches, improvements in predictive perfor-
mance have been minimal, due in part to a lack of sufficiently
large sets of experimentally characterized peptide binding affinities
for most MHC alleles.

Although neoantigen prediction for commonMHC class I alleles is
well studied (8), predictive accuracy on rare and less-characterized
MHC alleles remains poor (9, 10). Class II predictors are scarce (11).
Current estimates suggest that class II antigen lengths primarily range
from 13 to 25 amino acids (12), and this diversity has been an obstacle
to developing in silico neoantigen predictors (11, 13). As most neural
network architectures are designed for fixed-length inputs, methods
such as NetMHC (14–17) and MHCflurry (18) require preprocessing
of peptide sequences or training of separate classifiers for each peptide
length.

Clinical application of MHC–peptide binding predictors, to
identify biomarkers for cancer immunotherapy, requires scalability
to large patient cohorts and low false-positive rates (19). A cancer
may contain hundreds of candidate somatically altered peptides, but
few will actually bind to MHC proteins and elicit an immune
response (20). For many years, most neoantigen predictors were
trained primarily on quantitative peptide–MHC binding affinity
data from in vitro experiments (21). Advances in immunopepti-
domics technologies have enabled the identification of thousands of
naturally presented MHC-bound peptides (HLAp) from cancer
patient samples and cell lines (19, 22). Several neoantigen predictors
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are trained only on HLAp data for class I, and only for a limited
number of peptide lengths (21, 23). The EDGE neural network is
trained primarily on multiallelic HLAp and RNA sequencing
(RNA-seq) data from 74 cancer patients; ForestMHC is a random
forest trained on HLAp from publicly available monoallelic and
deconvoluted multiallelic cell lines. The potential to improve
neoantigen predictors by integrating binding affinity and HLAp
data (19) has motivated hybrid approaches (14, 18). However, most
methods predict more candidate neoantigens than are actually
immunogenic in patients (11, 19).

Here, we present a long short-term memory (LSTM) neural
network method, MHCnuggets, a neoantigen predictor designed
for MHC class I and II alleles in a single framework. The method
leverages transfer learning and allele clustering to accommodate
both common, well-characterized MHC alleles and rare, less-
studied alleles. Although existing computational neoantigen pre-
dictors generate a ranked list of candidate peptides, maximizing the
number of predictions that identify immunogenic peptides would
be preferred in many applications (18). We demonstrate that
MHCnuggets’ predictive performance is competitive with widely
used methods on binding affinity benchmark data sets. In com-
parison with hybrid methods that integrate binding affinity and
HLAp data, MHCnuggets shows fewer false positives and increased
positive predictive value (PPV) in a held-out cell line data set of
ligands identified by mass spectrometry (7, 22). To demonstrate the
clinical utility and applicability of MHCnuggets to large patient
cohorts, we investigated candidate immunogenic mutations from 26
tumor types in The Cancer Genome Atlas (TCGA). MHCnuggets
yielded 101,326 predicted immunogenic missense mutations
(IMM), observed in at least 1 individual (out of 1,124,266) in less
than 2.3 hours. These mutations were correlated with increased
lymphocyte infiltration; however, only 0.16% were observed in more
than 2 patients.

Materials and Methods
Implementation

MHCnuggets uses an LSTM neural network architecture (ref. 24;
Fig. 1A). LSTM architectures excel at handling variable length
sequence inputs and can learn long-term dependencies between
noncontiguous elements, enabling an input encoding that does
not require peptide shortening or splitting (Fig. 1B). LSTMs
are capable of handling peptides of any length. In practice, a
maximum peptide length should be selected for network training.
We set maximum peptide input length of 15 for class I and 30
for class II, for computational efficiency purposes. These values
cover the majority of lengths observed in naturally presented
MHC-bound peptides (12). The networks were trained with trans-
fer learning (25), which allows networks for less well-characterized
alleles to leverage information from extensively studied alleles
(Fig. 1C). Transfer learning was also used to train networks
combining binding affinity and HLAp data sets. In addition,
MHCnuggets architectures can be trained using either continuous
binding affinity measurements from in vitro experiments (half
maximal affinity or IC50) and/or immunopeptidomic (HLAp)
binary labels. The former utilizes a mean-squared error (MSE)
loss, whereas the latter utilizes binary cross-entropy (BCE) loss
for training. For each MHC allele, we trained a neural network
model consisting of an LSTM layer of 64 hidden units, a fully
connected layer of 64 hidden units, and a final output layer of a
single sigmoid unit (Fig. 1A).

For the 16 alleles where allele-specific HLAp training data were
available (26), we trained networks on both binding affinity andHLAp
data (MHCnuggets). Next, we trained networks only with binding
affinity measurements (MHCnuggets without mass spectrometry data
or noMS) for all MHC class I alleles. Due to the lack of allele-specific
HLAp training data for class II, all MHC class II networks were trained
only on binding affinity measurements. In total, we trained 148 class I
and 136 class II allele–specific networks. Common alleles comprise a
small fraction (<1%) of all knownMHCalleles (27). To handle binding
predictions for rare alleles, MHCnuggets selects a network by search-
ing for the closest allele, based on previously published supertype
clustering approaches. We prioritized approaches based on binding
pocket biochemical similarity when available. Briefly, HLA-A and
HLA-B alleles were clustered by MHC binding pocket amino acid
residue composition (28), and HLA-C and all MHC II alleles were
hierarchically clustered based upon experimental mass spectrometry
and binding assay results (29, 30). For alleles with no supertype
classification, the closest allele was from the same HLA gene, and
allele group if available, with preference for alleles with the largest
number of characterized binding peptides. All networks were imple-
mented with the Keras Python package (TensorFlow back-end;
refs. 31, 32). Open-source software is available at https://github.
com/KarchinLab/mhcnuggets, installable via pip or Docker, and has
been integrated into the PepVacSeq (33), pvactools (34), and Neoepi-
scope (35) pipelines.

Transformation of peptide binding affinities
Predicted binding affinity can be transformed into a range of

values well suited for neural network learning by selecting a
logarithmic base to match the weakest binding affinity of inter-
est (36). For most benchmarks in this work, we used the standard
upper limit of 50,000 nmol/L, so that predicted binding affinity
was

y ¼ max 0; 1� log50k IC50ð Þ� �

For the Bonsack and colleagues data set (8), the upper limit was
changed to 100,000 nmol/L because in their experiments, as described
in O'Donnell and colleagues (18), binders were defined as peptides
with IC50 < 100,000 nmol/L. As binding affinity was determined based
on in vitro HLA binding-competition versus a known strong binder
(reported IC50 < 50 nmol/L) experimental IC50 values were in the
micromolar range.

Performance metrics
PPV ¼ NTP/(NTP þ NFP), where NTP is the number of true

positives and NFP is the number of false positives. We calculated
PPV with respect to the top-ranked n peptides, where n is the
number of true binders in the ranked list, denoted as PPVn. For the
Bassani- Sternberg/Trolle (BST) benchmark, we also calculated PPV
over the top 50- and 500-ranked peptides.

Selection of final network weights
To minimize overfitting, network training was stopped after 100

epochs but if the best PPVn was reached earlier, network weights from
that earlier epoch were used in the final network. Notably, although we
chose to optimize the networks on PPVn, an alternative approach
could optimize on area under the ROC curve (auROC), Kendall's tau,
or Pearson r correlation. For the two alleles in the Immune Epitope
Database (IEDB) with the most training examples in their respective
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class, HLA-A�02:01 for class I and HLA-DRB1�01:01 for class II,
training was stopped after 200 epochs.

Network training
MSE loss LMSE was used to train networks with continuous-valued

binding affinity data and BCE loss LBCE for binary HLAp data. For a
data set with n samples,

LMSE ŷ; yð Þ ¼ 1
n

Xn
i¼1

ðy ið Þ � ŷ ið ÞÞ2

LBCE ŷ; yð Þ ¼ � 1
n

Xn
i¼1

y ið Þlog ŷ ið Þ
� �

þ 1� y ið Þ
� �

log 1� ŷ ið Þ
� �

All training used backpropagation with the Adam optimizer (37)
and learning rate of 0.001. Regularization was performed with dropout
and recurrent dropout (38) probabilities of 0.2. The number of hidden
units, dropout rate, and number of training epochs were estimated by
3-fold cross-validation onMHC class I A�02:01, a common allele with
a large number of experimentally characterized binding peptides.

One-hot encoding
Peptides were represented to the network as a series of amino acids;

each amino acid was represented as a 21-dimensional smoothed, one-
hot encoded vector (0.9 and 0.005 replace 1 and 0, respectively).

Peptide padding
MHCnuggets’ architecture is capable of handling peptides of any

length, but in practice a maximum length should be selected, which in
this work was 15 for class I and 30 for class II). Peptides that are less
than the maximum length are padded at the end with a character (“Z”
which is not in the amino acid alphabet) until they reach themaximum
length.

Transfer learning protocol for binding affinity data only
We used transfer learning to improve network learning for MHC

alleles with limited characterized peptides available for training. We
first trained base allele-specific networks for class I and class II, using
alleles with the most training examples in IEDB (HLA-A�02:01 for
class I and HLA-DRB1�01:01 for class II). For all other alleles, the final
weights of the base network for its respective class were used to
initialize network training, and then an allele-specific network was
trained for each allele. Next, we assessed prediction performance of
each allele-specific network on the training examples for each of the
alleles. For each allele, if the network that performed best was not the
HLA-A�02:01 network (for class I alleles) or HLA-DRB1�01:01 net-
work (for class II alleles), we did a second round of training, with the
best-performing network's weights used in the initialization step.

Transfer learning protocol for binding affinity and HLAp data
To integrateHLAp data into the class I networks, we initially trained

each network with binding affinity data as described above, transferred

Figure 1.

A,MHCnuggets’ architecture. A network is trained for each MHC allele. Each network has an LSTM layer with 64 hidden units, a fully connected layer with 64 hidden
units, and a final output layer of a single sigmoid unit.B, Input scheme for peptideswith variable lengths. MHCnuggets’ architecture is capable of handling peptides of
any length, but in practice, a maximum length should be selected. Peptides are extended with padding until they reach the maximum length, prior to input into the
neural network. The example shows padding for class II peptides with maximum length set to 30 amino acids. C, Transfer learning protocol for parameter sharing
among alleles. A base allele-specific network is trained for eachMHC class, with an allele selected by largest number of training examples. Transfer learning is applied
to train networks for the remaining alleles, with initial networkweights set to final base networkweights. A fine-tuning step identifies alleles that can be leveraged for
a second round of transfer learning to produce a final network (Materials and Methods).
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the final weights to a new network, and then continued training with
the HLAp data as positive examples augmented with random peptide
decoys as negative examples.

Performance assessment
To accurately assess the performance ofMHCnuggets on a variety of

MHC–peptide binding prediction tasks, we utilized six benchmark
sets: MHC class I alleles, MHC class II alleles, common alleles with a
trained model (allele-specific prediction), and rare alleles (pan-allele
prediction; Fig. 2; Supplementary Table S1). To compare to the HLA
ligand prediction tools from the NetMHC group (NetMHC 3.0,
NetMHC 4.0, NetMHCpan 2.0, NetMHCpan 4.0; refs. 16, 17), which
can be trained only by their developers, as well as the open-source
MHCflurry tools (18), we used multiple benchmarking strategies: (i)
independent benchmark test set of peptides not included as
training data for any of the methods; (ii) a previously published paired
training/testing benchmark; (iii) 5-fold cross-validation benchmark;
and (iv) leave-one-molecule-out (LOMO) benchmark.

We evaluated six MHC class I predictors on independent binding
affinity andHLAp data sets (7, 8, 22). First, we comparedMHCnuggets
to several class I predictors that incorporate both binding affinity and
HLAp data: MHCflurry 1.2.0, MHCflurry (train-MS), NetMHC 4.0,
and NetMHCpan 4.0. Each method was benchmarked using an
independent set of MHC-bound peptides identified by mass spec-
trometry across seven cell lines for sixMHC I alleles. For testing, HLAp
hits were combined with random decoy peptides sampled from the
human proteome in a 1:999 hit–decoy ratio, as described byAbelin and
colleagues (26), totaling 23,971,000 peptides. Next, four MHC class I
predictors trained only on binding affinity data [MHCnuggets (noMS)
and MHCflurry (noMS), NetMHC 3.0 and NetMHCpan 2.0] were
evaluated with the Kim and colleagues data set (5), in which each
predictor was trained with the BD2009 data and tested on BLIND
data. It was possible to compare NetMHC 3.0 and NetMHCpan

2.0 performance on Kim and colleagues, because they have pre-
viously published predicted IC50 values for all peptide–MHC pairs
in BLIND. This allowed us to calculate their PPVn, auROC, Kendall's
tau, and Pearson r correlations.

Next, we compared MHCnuggets’ class II ligand prediction
performance with self-reported performance statistics of NetMHC
group's MHC class II methods (39). We used the Jensen and
colleagues 5-fold cross-validation benchmark to assess allele-
specific MHC class II prediction of MHCnuggets and NetMHCII
2.3, for 27 alleles. NetMHCII 2.3 reported the average auROC
for five-fold cross-validation, and we report MHCnuggets’ PPV
for each of the 27 alleles as well as the average auROC, Pearson r,
and Kendall's tau correlations.

The LOMO benchmarks are a type of cross-validation designed to
estimate the performance of peptide binding predictionwith respect to
rare MHC alleles. Given training data for nMHC alleles, the data for a
single allele are held out and networks are trained for the remaining
n � 1 alleles. Then for each peptide, predictions are generated by the
remaining networks. We designed a LOMO benchmark to evaluate
MHC class I rare allele prediction, by selecting 20 alleles with 30 to 100
characterized peptides in the IEDB (40). For class II rare allele
prediction, we used the Jensen and colleagues (39) LOMObenchmark.
We were unable to assess rare allele prediction for NetMHC class I
methods, as no published results were available. For theNetMHC class
II methods, we comparedMHCnuggets to their self-reported auROCs.

Data set collection and curation
Data sources for network training and testing, TCGA somatic

mutations, TCGA tumor gene expression, and haplotype calling are
shown in Supplementary Tables S1 and S2. A curated version of the
IEDB 2018 (40) and the 16 class I monoallelic B-cell line immuno-
peptidomes (26) was provided by Tim O'Donnell (https://data.men
deley.com/datasets/8pz43nvvxh/2), binding affinity assays of human

Figure 2.

MHCnuggets’ features.A,Venn diagram representation of theMHC–peptide binding prediction functions ofMHCnuggets and similar tools.B, Training andMHC allele
model selection scheme for MHCnuggets.
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papillomavirus (HPV)–derived peptides were provided by Maria
Bonsack and Angelika Riemer (8), BST ¼ immunopeptidomes from
six cell lines with multiallelic MHCs (26 MHC class I alleles; ref. 22)
and from soluble HLA(sHLA)-transfected HeLa cells separated by
allele (4 MHC class I alleles; ref. 7). Decoy random peptides were
sampled from the human proteome.

Training data sets
The networks were trained with data from a curated version of the

IEDB (2018; ref. 40), containing chemical binding affinity measure-
ments for 241,553 peptide–allele pairs covering 217 class I alleles and
96,211 peptide–allele pairs covering 135 class II alleles. Additional
training data consisted of 16 class I mon-allelic B-cell line immuno-
peptidomes (26). The immunopeptidome data are limited to HLAp
binders and were supplemented by decoy random peptides sampled
from the human proteome (https://data.mendeley.com/datasets/
8pz43nvvxh/2).

Benchmark data sets

Kim and colleagues: This benchmark contained 53 MHC class I
alleles and 137,654 IC50 measurements published prior to 2009
(training set) and 53 unique MHC class I alleles with 26,888 IC50

measurements, published from 2009 to 2013 (test set). Three alleles
(HLA-B�27:03, HLA-B�38:01, and HLA-B�08:03) did not contain
sufficient training data, and two alleles (HLA-A�46:01 and HLA-
B�27:03) did not contain any peptides defined as binders in this work
(IC50 < 500 nmol/L). Therefore, a total of four alleles (HLA-A�46:01,
HLA-B�27:03, HLA-B�38:01, and HLA-B�08:03) were dropped from
the analysis. All peptides in this benchmark set consisted of 8 to 11
amino acid residues.

Bonsack and colleagues: This data set contains 475 synthetic pep-
tides derived from model protein sequences HPV16 E6 and E7 tested
for binding to 7 alleles (HLA-A�01:01, HLA-A�02:01, HLA-A�03:01,
HLA-A�11:01,HLA-A�24:02,HLA-B�07:02, andHLA-B�15:01). Each
peptide was tested in competition-based cellular binding assays with a
known high-affinity fluorescein-labeled reference peptide. EBV-
transformed B-lymphoblastic cells were stripped of their naturally
bound peptides and mixed with serially diluted test peptides and 150
nmol/L of reference peptide. Each synthetic peptide was tested at 8
different concentrations ranging from 780 nmol/L to 100,000 nmol/L.
Mixture fluorescence at each synthetic peptide concentration was
measured with flow cytometry, and a nonlinear regression analysis
was used to find the test peptide concentration that inhibited 50% of
the reference peptide binding (IC50). Peptideswere classified as binders
(IC50 � 100,000 nmol/L) or nonbinders (IC50 > 100,000 nmol/L).
Peptides in this independent benchmark set do not have IEDB entries.

Bassani-Sternberg and colleagues, 2015: This data set contains
22,598 unique peptides eluted from 6 cell lines with multiallelic
MHCs. Out of the total 6 cell lines, a total of 26 alleles were
reported. For each multiallelic cell line, peptide/MHC pairs were
found through deconvolution, following the protocol described
by (26), with the difference that we used MHCnuggets rather than
NetMHCpan 2.8 (41) to predict IC50 values for each peptide–MHC
pair. For each cell line, each peptide was initially assigned as a
binder to all expressed alleles. Then, for each allele, we filtered out
any peptide predicted to bind with IC50 > 1,000 nmol/L to that
allele, and with IC50 < 150 nmol/L to any other allele. Peptides
found for 6 alleles (HLA-A�01:01, HLA-A�02:01, HLA-A�03:01,

HLA-A�24:02, HLA-A�31:01, and HLA-B�51:01) were selected for
allele-specific prediction testing. Trained networks were available
for these alleles from all the methods that we compared.

Trolle and colleagues: This data set contains 15,524 unique peptides
eluted from soluble HLA (sHLA) transfected HeLa cells, a process that
allowed for separating binding peptides to a single MHC allele. This
data set reports peptides for 5MHC alleles. Peptides found for 4 alleles
(HLA-A�01:01, HLA-A�02:01, HLA-A24�02, andHLA-B�51:01) were
selected for testing. Peptide lengths in this data set range from 8 to 15
amino acid residues.

BST: This benchmark consists of 23,971 HLAp hits for 6 alleles,
from Bassani-Sternberg and colleagues (22) and Trolle and collea-
gues (42) plus 23,947,029 random decoy peptides sampled from the
human proteome. Any peptides found to overlap with the training
HLAp data (26) were removed.

Jensen and colleagues: This benchmark was designed to assess both
allele-specific and rareMHC class II binding affinity predictors. Allele-
specific prediction was tested with a 5-fold cross-validation experi-
ment on peptides found in IEDB in 2016 but not 2013. Rare allele
predictions were tested with the LOMO protocol.

IEDB class I rare alleles: This data set was designed to apply the
LOMO protocol to class I alleles. It included 20 "pseudo-rare"
alleles with 30 to 100 binding affinity peptide measurements
in IEDB.

All data sets used in this work are available at http://dx.doi.org/
10.17632/8c26kkrfpr.2.

TCGA analysis pipeline
To assess candidate immunogenic somatic mutations in patients

from the TCGA cohort, we developed and implemented a basic
pipeline based on whole-exome and RNA-seq data (Supplementary
Fig. S1). Our analysis builds upon work from the TCGA PanCancer
Analysis teams for drivers (43), mutation calling (44), and cancer
immune landscapes (45). We obtained somatic mutation calls for all
cancer types from Multicenter Mutation Calling in Multiple Cancers
(MC3; v0.2.8; 7,775 patients). Tumor-specific RNA expression values
from Broad TCGA Firehose were standardized across tumor types
using the RSEM Z-score (46). MHC allele calls were obtained from
the TCGA cancer immune landscape publication, in which up to 6
MHC class I alleles (HLA-A, HLA-B, and HLA-C) were identified
for each patient using OptiType (ref. 47; Supplementary Table S2).
We included patients for which mutation calls, MHC allele calls,
and RNA expression values were available from TCGA. After these
considerations, the analysis included 6,613 patients from 26 TCGA
tumor types. Six cancer types were not included in our analysis,
because 15 or fewer patientsmet this requirement: lymphoid neoplasm
diffuse large B-cell lymphoma, esophageal carcinoma, mesothelioma,
skin cutaneous melanoma, stomach adenocarcinoma, and ovarian
serous cystadenocarcinoma.

The somatic missense mutations identified in each patient were
filtered to include only thosewith strong evidence ofmutant gene RNA
expression in that patient (Z > 1.0). For each mutation that passed this
filter, we used the transcript assigned by MC3 to pull flanking amino
acid residues from the SwissProt database (48), yielding a 21 amino
acid residue sequence fragment centered at the mutated residue. All
candidate peptides of length 8, 9, 10, and 11 that included the mutated
residue were extracted from each sequence fragment. Next binding
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affinity predictions were generated for each mutated peptide for up to
six MHC class I alleles, depending on the patient's HLA genotypes. In
total, each somatic mutation was represented by 38 mutated peptides
for up to six possible MHC pairings.

We applied a permissive filter to select candidate immunogenic
peptides, requiring mutated peptides to have binding affinity of IC50 <
500 nmol/L for at least one MHC allele. Somatic missense mutations
that generated neoantigens meeting these criteria were considered
predicted IMMs. For a given patient, if amutationwas predicted to be a
predicted IMM for multiple alleles, it was counted only once using the
MHC allele with the lowest predicted IC50. Finally, for each patient, we
counted the number of predicted IMMs found in their exome and
stratified by tumor type. We then identified predicted IMMs that were
harbored by more than 1 patient.

We sought to ascertain whether predicted IMMs occurred prefer-
entially in particular gene or protein regions. Using the HotMAPS 1D
algorithm v1.2.2 (49), we clustered primary amino acid residue
sequence to identify regions where mutations were frequently pre-
dicted as IMM, with statistical significance (q < 0.01, Benjamini–
Hochberg method; ref. 50). In this analysis, mutations were stratified
by cancer type, and we considered enrichment within linear regions of
50 amino acid residues.

We considered that mutation immunogenicity might be associated
with potential driver status of amutation. Driver status was inferred by
CHASMplus (51), a random forest classifier that utilizes amultifaceted
feature set to predict driver missense mutations and is effective at
identifying both common and rare driver mutations. For each muta-
tion, immunogenicity was represented as a binary response variable

and driver status was used as a covariate. Mutations with CHASMplus
q-value < 0.01 were considered drivers (51). We modeled the rela-
tionship with univariate logistic regression (R glm package with
binomial link logit function).

To assess whether the total number of predicted IMMs per patient
was associated with changes in tumor immune infiltrates, we per-
formed Poisson regression (R glm package with Poisson link log
function). All estimates of immune infiltrates were obtained from
Thorsson and colleagues (45, 52). We fit two univariate models in
which the response variable was the predicted IMM count and the
covariate was either total leukocyte fraction or fraction ofCD8þT cells.

MC3 mutation filtering
MC3 TCGA somatic mutation calls were filtered for missense

mutations.

Regression models
We applied two univariate Poisson regression models. In the first

model, each patient's predicted IMM load was the response variable
and the independent variable X was the total leukocyte fraction. The
fitted coefficient b ¼ 0:75 (P < 2 � 10�16, Wald test) indicated that
increased predicted IMM load was significantly associated with
increased leukocyte fraction in a patient's cancer. In a second model,
X was the proportion of CD8þ T cells inferred by CIBERSORT (53).
The fitted coefficientb ¼ 5:9 (P< 2� 10�16,Wald test) indicated that
increased predicted IMM load was associated with increased tumor-
infiltrating CD8þ T cells. Total lymphocyte and (Aggregate3) CD8þ

T-cell fractions were estimated in Thorsson and colleagues (45).

Figure 3.

MHC class I benchmark comparisons. A, PPVn for MHC class I allele–specific prediction on binding affinity test sets from Bonsack and colleagues (seven alleles) and
Kim and colleagues (53 alleles; refs. 5, 8). B, PPVn for MHC class I allele–specific prediction on HLAp BST data set (Bassani-Sternberg and colleagues and Trolle and
colleagues; refs. 7, 22), stratified by allele (six alleles).C, PPVn for MHC class I allele–specific prediction on HLAp BST data set (from B) stratified by peptide sequence
length. D, True and false positives for each method on the top 50 ranked peptides from the HLAp BST data set. FP, false positives; PPVn, positive predictive value on
the top n ranked peptides, where n is the number of true binders; TP, true positives.
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Runtime analysis
To assess the speed and scalability of the testedmethods, we selected

1million peptides sampled from theAbelin and colleagues data set (26)
for class I alleles, and one million peptides sampled from the IEDB
(curated data set 2018; ref. 54) for class II alleles. Sampling was done
with replacement. For each method listed in Fig. 1A, networks for
three class I MHC alleles (HLA-A�02:01, HLA-A�02:07, and HLA-
A�01:01) and three class II MHC alleles (HLA-DRB1�01:01, HLA-
DRB1�11:01, and HLA-DRB1�04:01) were used to predict binding
over a range of input sample sizes (102, 103, 104, 105, and 106). All
methodswere run on a single graphics processing unit (GPU) compute
node (oneNVIDIATESLAK80GPUplus six 2.50 GHz Intel Xeon E5-
2680v3 CPUs, 20 GB memory).

Results
High-throughput MHCnuggets breaks the MHC ligand
prediction plateau

The MHCnuggets LSTM neural network architecture accepts pep-
tides of variable lengths as inputs so that ligand binding prediction can
be performed for both MHC class I and II alleles. To enable binding
prediction for rare MHC alleles that have limited associated experi-
mental data, we designed a method that leverages networks built for
closely related common alleles with extensive data.When available, we
utilize a transfer learning protocol to integrate binding affinity and
HLAp results in a single networkmodel, to better represent the natural
diversity of MHC binding peptides.

To assess the baseline performance of MHCnuggets allele-specific
networks on binding affinity data, we compared our approach with

widely used MHC class I ligand prediction methods using two
validation sets of binding affinity measurements (5, 8). We trained
and tested MHCnuggets (noMS) and MHCflurry (noMS) using the
Kim and colleagues data set (5) and evaluated the predictions
provided by NetMHC 3.0 and NetMHCpan 2.0. We observed that
MHCnuggets' performance (PPVn ¼ 0.829, auROC ¼ 0.924) was
comparable with thesemethods (Fig. 3A; PPVn of all methods¼ 0.825
� 0.005, auROC of all methods¼ 0.928� 0.0031). MHCnuggets was
also comparable (PPVn ¼ 0.633, auROC ¼ 0.794) to these methods
when tested on the Bonsack and colleagues data set (ref. 8; PPVn of all
methods ¼ 0.625 � 0.008, auROC of all methods ¼ 0.77 �
0.02; Fig. 3A; � refers to standard deviation; Supplementary Tables
S3A and S3B, and S4A and S4B).

Earlier neoantigen prediction methods focused on class I and
trained on binding affinity data from IEDB (54). More recent work
incorporated both binding affinity and HLAp data into network
training (14, 18). We compared MHCnuggets with several class I
predictors that used both binding affinity and HLAp data: MHCflurry
1.2.0, MHCflurry (train-MS), NetMHC 4.0, and NetMHCpan 4.0. We
selected the BST HLAp data set (7, 22, 26) as an independent
benchmark, as it was not used as training data by any of thesemethods.
For all alleles tested, MHCnuggets achieved an overall PPVn of 0.42
and auROC of 0.82 (Fig. 3B). On average, MHCnuggets' PPVn was
more than three times higher than MHCflurry 1.2.0, MHCflurry
(train-MS), NetMHC 4.0, and NetMHCpan 4.0. For all alleles,
MHCnuggets predicted fewer binders than other methods, resulting
in fewer false-positive predictions. Stratifying by peptide length,
MHCnuggets’ increased PPVn was most evident for peptides of length
9, 10, and 11 (Fig. 3C). The length distribution of predicted binders

Figure 4.

MHCclass II benchmark comparisons.A,PPVn forMHC class II allele–specific prediction onbinding affinity test set from Jensen and colleagues (27 alleles, stratifiedby
allele).B, auROC, K-Tau, andPearson r scores forMHCclass II alleles from5-fold cross-validation. NetMHCII 2.3 performance is from their self-reported auROC. K-Tau,
Kendall's tau correlation; PPVn, positive predictive value on the top n ranked peptides, where n is the number of true binders.
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was commensurate with the observed distribution of naturally occur-
ring binders in the HLAp benchmark tests (ref. 7; Supplementary
Table S5A–S5D).

For some clinical applications, it may be desirable to minimize
the number of false positives among a small number of top-scored
peptides. We also compared PPV of the methods listed above on
their top 50 and 500 ranked peptides from the BST data set
(six MHC class I alleles; Supplementary Table S5E and S5F).
MHCnuggets exhibited the highest PPV in the top 50 for all alleles
except HLA-B�51:01 and the highest PPV in the top 500 for all
alleles (Fig. 3D).

Prediction of peptide–MHC binding for class II and rare alleles
We assessed the baseline performance of MHCnuggets class II

allele–specific networks on binding affinity data. To enable compar-
ison with the class II methods from the NetMHC group, we used a
5-fold cross-validation benchmark derived from IEDB that
was included in the publication describing NetMHCII 2.3 and

NetMHCIIpan 3.2 (39). First, we computed PPVn for each of the
27 allele-specific networks separately (Fig. 4A; mean PPVn ¼ 0.739).
Next, we computed the overall auROC, Pearson r, and Kendall's tau
correlations for all 27 class II alleles. MHCnuggets overall auROC
(0.849) was comparable with that of the NetMHCII 2.3 (0.861) and
NetMHCIIpan 3.2 (0.861). Comparison with NetMHC class II meth-
odswas limited to overall auROCas published in Jensen and colleagues
(39), because their PPVn results are not publicly available (Fig. 4B;
Supplementary Table S6A and S6B).

We estimated performance for those class I and II MHC alleles for
which we were unable to train allele-specific networks, using LOMO
cross-validation (39). In this LOMO protocol, MHC-peptide binding
is assessed for a well-characterized allele that has been held out from
training, to approximate prediction performance for a rare allele
(Fig. 5A). For the 20 class I alleles, the mean PPVn was 0.65, and the
mean auROC was 0.671. For the 27 class II alleles, the mean PPVn was
0.65 and the mean auROCwas 0.792. In comparison, the class II mean
auROC of NetMHCIIpan 3.2 was 0.781 (Fig. 5B–D; Supplementary

Figure 5.

MHC class I and II benchmark comparisons to estimate rare allele performance. A, Schematic representation of LOMO testing. B, PPVn for MHC class I rare allele
prediction on IEDB pseudo-rare alleles binding affinity test set (20 alleles, stratified by allele).C, PPVn for MHC class II rare allele prediction on binding affinity test set
from Jensen and colleagues (27 alleles, stratified by allele; ref. 39).D, auROC for MHC class II rare allele prediction on LOMO binding affinity test set from Jensen and
colleagues (27 alleles, stratified by allele; ref. 39). NetMHCIIpan 3.2 results are from their self-reported auROC. PPVn, positive predictive value on the top n ranked
peptides, where n is the number of true binders.
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Tables S7, and S8A and S8B).NetMHCpan rare allele predictor LOMO
test results for class I are not publicly available; therefore, we were
unable to compare with them.

Fast and scalable computation
When run on a GPU architecture, MHCnuggets was faster

and scaled more efficiently than MHC ligand predictors from the
NetMHC family and MHCflurry. Given an input of one million
peptides randomly selected from Abelin and colleagues (26),
MHCnuggets runtime was 3.62, 69.7, and 624.5 times faster
than MHCflurry 1.2.0, NetMHC 4.0, NetMHCpan 4.0, respective-
ly (Fig. 6A). The improvement was similar for class II peptides,
for which an input of one million peptides to MHCnuggets
ran 65.6 times and 126 times faster than NetMHCII 2.3 and
NetMHCIIpan 3.2, respectively (Fig. 6B). As the total number
of input peptides was increased from 0 to 1 million, the runtime
per peptide plateaued for other methods but decreased exponen-
tially for MHCnuggets.

Predicted MHC class I IMMs in TCGA patients
To illustrate the utility ofMHCnuggets' improvements in scalability

and PPV for the analysis of very large patient cohorts, we predicted
class I IMMs in patients whose exomes were sequenced by the TCGA
consortium (Materials and Methods). In our analysis pipeline, patient
exomes were split into 21 amino acid residue sequence fragments,
centered on each somatic missense mutation. For each sequence
fragment, MHCnuggets predicted the MHC binding for all possible
8-, 9-, 10-, and 11-length peptide windows. Peptides that passed filters
of predicted IC50 threshold (<500 nmol/L) and gene expression (Z >
1.0; Materials and Methods) for at least one patient-specific MHC
allele were classified as predicted IMMs (Supplementary Table S9A).
Finally, we characterized driver status and positional hotspot propen-
sity of the predicted IMMs.

Total processing time for 26,284,638 allele-peptide comparisons
supported by RNA-seq expression was under 2.3 hours. First, we
sought to ascertain the extent of variability in predicted IMM count
among individuals with different cancer types. Next, we identified
predicted IMMs and protein regions enriched for predicted IMMs
that were shared across patients, because these might be informative

for neoantigen-based therapeutic applications. Then we considered
whether predicted IMMs were more or less likely to be driver
mutations. Finally, we assessed the associations between predicted
patient IMM load and computationally estimated immune cell
infiltrates.

After applying a gene-expression filter, we identified 101,326 unique
predicted IMMs in 26 TCGA cancer types, with a mean of 15.6 per
patient.We found that themajority of patients harbored fewer than six
predicted IMMs, and 197 patients had none. Seventy-two percent of
patients had from one to 10 predicted IMMs, compared with 1.9% of
patients with more than 100, and 9 patients with more than 1,000
(Fig. 7A). Cancer types with the highest number of predicted IMMs
were uterine corpus endometrial carcinoma (UCEC), colon adeno-
carcinoma (COAD), and lung adenocarcinoma (LUAD), all three of
which are known for highmutation burden and immunogenicity (45).
UCEC and COAD are also known to have a high frequency of
microsatellite-instable (MSI) tumors. The lowest number were found
in uveal melanoma (UVM), paraganglioma and pheochromocytoma
(PCPG), and testicular germ cell tumors (TGCT; Fig. 7B; Supple-
mentary Table S9B).

Across all cancer types, we identified 1,393 predicted IMMs
harbored by 2 or more patients, of which 167 were identified
in 3 or more patients. Of these, 167 only 11.5% occurred exclu-
sively in a single cancer type (Fig. 7C). The predicted IMMs
identified in the largest number of patients were IDH1 R132H
(62), FGFR3 S249C (24), PIK3CA E545K (23), KRAS G12D (18),
PIK3CA E542K (18), TP53 R175H (18), TP53 R248Q (18), TP53
R273C (17), and KRAS G12V (16), which are known recurrent
oncogenic driver mutations (55, 56). Of the 1,071 genes harboring
predicted IMMs in 2 or more patients, the ones containing
the most included TP53 (68), CTNNB1 (18), PIK3CA (16),
HRAS (8), KRAS (7), PTEN (7), FBXW7 (6), EGFR (5), MDN1
(5), POLE (5), TRRAP (5), and VPS13C (5; Supplementary
Table S9C). Six missense mutations harbored by patients in the
TCGA cohorts were previously validated by CD8þ T-cell response
assays (57, 58, 59). Of the six missense mutations, TP53R248Q,
TP53Y220C, TP53R175H, TP53R248W, and KRASG12D were predicted
to be IMMs by our MHCnuggets pipeline and were shared by 3 or
more of the TCGA patients.

Figure 6.

Timing and scalability. Runtime benchmark of tested methods using versions available on October 1, 2019, over a range of inputs (up to 1 million peptides). A, MHC
class I prediction. B, MHC class II prediction.
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Furthermore, 61.7% of the 167 predicted IMMs shared by 3 ormore
patients were classified as driver missense mutations by CHASMplus
(q < 0.01). This percentage is significantly higher than the number of
predicted drivers among all TCGA missense mutations (9,821 out of

791,637 or 1.2%). Although many shared IMMs were predicted to be
driver missense mutations, the percentage of predicted IMMs pre-
dicted to be drivers was �0.1% of total predicted IMMs in our study.
When compared with the OncoKB database of experimentally

Figure 7.

MHC class I IMMs in TCGA patients.A,Number of predicted IMMs identified in 6,613 TCGA patients. Dotted line, mean predicted IMMs per patient (15.6). Note that 123
patients had >100 predicted IMMs but are not included for visual clarity.B,Number of predicted IMMs by cancer type. C, Predicted IMMs shared by 3 ormore patients
and the cancer types inwhich they occurred. Each row represents a cancer type, and each column illustrates the overlap of predicted IMMs seen in a single cancer type
or multiple cancer types. For example, the first column shows the number of predicted IMMs shared among patients with colorectal adenocarcinoma and uterine
corpus endometrial carcinoma. Bars to the left show the total number of unique predicted IMMs in each cancer type. Bar heights reflect the count of unique shared
predicted IMMs, not the total number of patients in which the predicted IMM was observed. Image generated with UpSetR. D, Fibroblast growth factor receptor
(FGFR3) predicted IMM hot region identified by HotMAPs in bladder cancer (BLCA). Predicted IMMs shown and number of BLCA patients with the predicted IMM:
p.E216K (1), p.D222N (1), p.G235D (1), p.R248C (3), andp.S249C (24). Except for p.G235D, thesepredicted IMMsare proximal to the interface of FGFR3protein and the
light and heavy chains of an antibody fragment designed for therapeutic application in bladder cancer (PDB ID: 3GRW; ref. 61). ACC, adrenocortical carcinoma; BLCA,
bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangio-
carcinoma; COAD, colon adenocarcinoma; GBM, glioblastomamultiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC; kidney
renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate
adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; TGCT, testicular germ cell tumor; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine
corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
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confirmed driver mutations (60), 53.9% of the shared predicted IMMs
identified as “oncogenic” or “likely oncogenic” driver mutations. The
percentage is lower (25.7%) if “likely oncogenic” mutations are
excluded.

Although we observed a limited number of shared predicted IMMs,
we reasoned that protein regions enriched for predicted IMMs
could present a therapeutic opportunity in certain cancer types.
Using HotMAPS 1D, we identified clusters of residues within protein
regions having statistically significant enrichment of predicted IMMs
(q < 0.01). These included CIC in low-grade glioma (LGG); NFE2L2
and FGFR3 (Fig. 7D) in bladder cancer (BLCA; ref. 61); KRAS in
pancreatic adenocarcinoma (PAAD); KIT in TGCTs; HRAS in
head and neck squamous carcinoma (HNSC); PTEN, POLE, and
PPP2R1A in UCEC; and GNAQ and SF3B1 in UVM. Three genes
harbored predicted immunogenic regions in more than one cancer
type: P53 in BLCA, BRCA, HNSC, LGG, and UCEC; PIK3CA in
HNSC and cervical squamous cell carcinoma (CESC); andCTNNB1 in
liver hepatocellular carcinoma (LIHC) and UCEC (Supplementary
Table S9D).

We explored the relationship between mutation driver status
predicted by CHASMplus and predicted IMM status using logistic
regression. The log odds of being a predicted IMM was signi-
ficantly decreased for drivers (b ¼ �0.66, Wald test P < 2e�16),
which is consistent with previous work suggesting that negative
evolutionary selection eliminates MHC class I immunogenic onco-
genic mutations early in tumor development (62).

Finally, we considered whether a patient's predicted IMM load was
associated with changes in immune cell infiltrates as estimated from
RNA-seq of bulk cancer tissue. Predicted IMM load was significantly
associated with increased total leukocyte fraction (b¼ 0.75, Wald test
P < 2� 10�16) andwith increased CD8þT-cell fraction (b¼ 5.9,Wald
test P < 2 � 10�16; Supplementary Table S9E).

These findings suggest that IMMs drive tumor immunoediting and
may be informative for the interpretation of clinical responses to
immunotherapy.

Discussion
MHCnuggets provides a flexible open-source platform for MHC–

peptide binding prediction that can handle commonMHC class I and
II alleles as well as rare alleles of both classes. The LSTM network
architecture can handle peptide sequences of arbitrary length, without
shortening or splitting. The single neural network architecture requires
fewer hyperparameters than more complex architectures and simpli-
fies network training. In addition, our neural network transfer learning
protocols allow for parameter sharing among allele-specific, binding
affinity– and HLAp-trained networks. When trained on binding
affinity data, MHCnuggets performs as well as other current methods.
When trained on both binding affinity and HLAp data, we demon-
strate improved PPVn on an independent HLAp test set, with
respect to other methods that use both binding affinity and HLAp
data. Although PPVn was lowest for the independent HLAp test set for
all methods, this result is likely due to systematic differences between
training HLAp data (monoallelic B-cell lines; ref. 26) and the test
data comprised of seven multiallelic cell lines (HeLA, HTC116, JY,
fibroblasts, SupB15, HCC1937, and HCC1143; refs. 7, 22), yielding a
more challenging prediction problem. We attribute MHCnuggets’
improvement on the independent test set with respect to other
methods to (1) optimization of PPVn in our network training
protocol and (2) our implementation of transfer learning to integrate
information from binding affinity and HLAp measurements. The

performance of all methods is generally highest when both training
and test data come from similar binding affinity experiments, but
performance improvement on HLAp data is more biologically
relevant (63).

We demonstrate improved scalability by comparing the runtime of
MHCnuggets on 1 million peptides to comparable methods, and
further by processing over 26 million expressed peptide–allele pairs
across TCGA samples in under 2.3 hours. We identified 101,326
unique IMMs harbored by patients using 26 cancer types sequenced
by the TCGA, based on transcriptional abundance and differential
binding affinity compared with reference peptides. These results
contrast with a previous report of neoantigens in TCGA patients in
several respects. Rech and colleagues (64) applied a minimum expres-
sion threshold of 1 RNA-seq read count, an IEDB-recommended
combination of neoantigen predictors derived primarily fromdifferent
versions of NetMHC, and IC50 threshold of 50 nmol/L to identify
strongMHC binders. Their approach yielded 495,793 predicted class I
classically defined neoantigen peptides (each harboring a single
immunogenic mutation) from 6,324 patients in 26 cancer types. As
in our study, high variability in neoantigen burden across cancer types
was observed. The difference between predicted IMM and neoantigen
burden in the two studies is likely due to differences in RNA expression
threshold and the low false-positive rate of MHCnuggets compared
with IEDB-recommended tools.

Based on our conservative thresholds, predicted IMMs were almost
exclusively private to individual TCGA patients, with only 1,393
predicted IMMs observed in more than 1 patient. Although more
than 61% of predicted IMMs shared by more than 2 patients were
predicted to be driver mutations, the overall log odds of immunoge-
nicity decreased for predicted driver mutations, indicating immuno-
genicity might shape the driver mutation landscape. Patient predicted
IMM counts were also associated with increase in total leukocyte
fraction and fraction of CD8þ T cells, suggesting that they may be
relevant to immune system response to cancer.

This work has several limitations. First, our analyses are limited to
missense mutations, which, although numerous, cannot account for
the various somatic gene fusions, frameshift indels, splice variants, etc.,
in tumors that also generate neoantigens. Although MHCnuggets can
handle peptide sequences regardless of their mutational origins, we
prioritized missense mutations in this study. Indeed, the context of a
peptide sequence, such as what sequences are flanking, its source
protein and the expression of the source protein, is informative
for MHC ligand prediction (21, 26). This type of information is
available only for a limited number of HLAp data sets, which were
unavailable to us for training purposes. As more well-characterized
HLAp data sets become available, we will further develop
MHCnuggets to include these features. We did not address T-cell
receptor binding to bound peptide–MHC complexes or T-cell acti-
vation upon complex binding. Although we are pursuing this more
complex modeling problem, we believe that improved prediction of
peptide binding to MHC is also therapeutically relevant (21). Finally,
we are unable to directly compare performance to the MHC class II
prediction methods from the NetMHC group, except for self-reported
auROC. Although we are not able to do a rigorous comparison of
MHCnuggets class II prediction, our benchmark comparisons sug-
gested that MHCnuggets was competitive with NetMHCII 2.3 and
that MHCnuggets class II rare allele performance was competitive
with NetMHCIIpan 3.2, suggesting that further work in this area is
warranted.

In summary, we present MHCnuggets, an open-source software
package for MHC ligand prediction that performs better than existing
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methods with respect to PPV by leveraging transfer learning to
integrate binding affinity and HLAp data. In contrast to previous
methods, MHCnuggets handles both MHC class I and II ligand
prediction and both common and rare HLA alleles, all within a single
framework. We demonstrated the utility of MHCnuggets as a basic
pipeline to analyze mutation immunogenicity, shared predicted
IMMs, and the relationship betweenmutation immunogenicity, driver
potential, and immune infiltrates from large-scale cancer patient
sequencing data from TCGA.
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