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The supplementary materials are organized as follows. Appendix A provides additional commentary on assumptions used in
the testability criterion, while Appendix B lists all ADMGs that satisfy the criterion. Appendices C, D, E, and F provide
additional notes on non-parametric Verma tests, models with additional baseline covariates, the nested Markov factorization,
and the simulated datasets respectively. Appendix G contains proofs of the main results.

A ON THE TRUE MEDIATION AND RELEVANCE ASSUMPTIONS
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Figure 1: (a) A model that does not satisfy M being a mediator between A and Y ; (b) A model that does not satisfy Z 6⊥⊥ A;
(c) A model that does not satisfy Z 6⊥⊥ Y |A,M .

Assumptions (A1) (true mediation) and (A2) (relevance of the anchor) help ensure that any Verma constraint detected
between the anchor Z and outcome Y is “non-trivial,” i.e., is not implied by an ordinary independence constraint. We
first show why this is important by way of example, and then show that no ordinary constraint exists between Z and Y in
distributions satisfying (A1) and (A2). Before proceeding, we also briefly note that (A1) is a relatively weak assumption in
that it relies on some minimal background knowledge about how the treatment affects the outcome, while (A2) is testable.

Consider the ADMG in Fig. 1(a). Here, M does not satisfy assumption (A1). It can be checked via m-separation that any
distribution that nested factorizes with respect to this ADMG would encode the ordinary independence Z ⊥⊥ Y. Trivially,
this constraint would also hold in the post-intervention distribution p(Z,A,M, Y )/p(M |A,Z). Fig. 1(b) demonstrates why
accidentally testing for trivial Verma constraints such as this one may lead to incorrect conclusions about identifiability of
the target E[Y |do(a)]. In Fig. 1(b), we have that Z ⊥⊥ A, so assumption (A2) is not satisfied. There exist no paths between
Z and Y, leading to a trivial Verma constraint implied by the ordinary independence Z ⊥⊥ Y. Relying on a test of this trivial
constraint would also mislead the analyst into thinking E[Y |do(a)] is identified, when in fact, the front-door conditions
are not met due to the A→Y edge. Finally, consider the ADMG in Fig. 1(c). Distributions factorizing according to this
graph satisfy Z ⊥⊥ Y | A,M, which violates assumption (A2). These distributions will also exhibit the same trivial Verma
constraint, and here too, relying on such a test would lead to incorrect conclusions on identifiability. The following lemma
confirms that under the given assumptions such trivial constraints do not arise.

Lemma 1. Distributions p(Z,A,M, Y ) satisfying assumptions (A1) and (A2) do not entail any ordinary independence
constraints between Z and Y.

Proof. Given (A1), p(Z,A,M, Y ) must nested factorize wrt an ADMG, say G, containing the path A→M→Y. Given
Z 6⊥⊥ A and Z is not a causal consequence of A due to (A2), G also contains either Z→A or Z↔A or both. This implies
the existence of an unblocked path Z→A→M→Y and/or a similar one that starts with Z↔A. These paths become
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blocked when we condition on A and M. However, since by assumption (A2), we have that Z 6⊥⊥ Y |A,M at least one of
the following paths consisting of colliders exist in G (we use the notation ◦→ below to mean a directed or bidirected edge):

• The edge Z ◦→Y exists in G (trivially a collider path.)

• A path Z ◦→A↔Y exists in G where A is a collider.

• A path Z ◦→M↔Y exists in G where M is a collider.

• A path Z ◦→A↔M↔Y and/or Z ◦→M↔A↔Y exists in G where both A and M are colliders.

Note that conditioning on a descendant of a collider also opens the collider; however, given just these 4 variables, this
situation arises only when we condition on M with A being the collider (a case which is already covered above.) An
inducing path between two variables P and Q is defined as a path (comprised of any combination of directed and bidirected
edges) between two variables such that every intermediate node is a collider and a causal ancestor of either P or Q. If such a
path exists, then it is known that P and Q are not m-separable given any subset of other variables, i.e., there is no ordinary
independence constraint between them [Verma and Pearl, 1990]. Here, any of the above paths would form inducing paths
(Z ◦→Y is trivially an inducing path), as by assumption (A1) both A and M are causal ancestors of Y. Hence, there are no
ordinary conditional independence constraints implied in distributions p(Z,A,M, Y ) that satisfy assumptions (A1-A3).

B EXHAUSTIVE LIST OF ADMGS SATISFYING THE TESTABLE CRITERION

Fig. 2 is an exhaustive list of all ADMGs that satisfy the Verma restriction in Theorem 1. Importantly, all of these ADMGs
also satisfy the front-door criteria (or its extensions) that permit identification of E[Y |do(a)]. The ADMGs in Fig. 2(a-c)
are ones where the anchor Z also satisfies the instrumental variable conditions. A version of Fig. 2 appears in Shpitser et al.
[2014] as the conjectured list of ADMGs that satisfy a Verma restriction which distinguishes it from a supermodel where the
Z→Y edge is present. This conjecture was based on empirical comparisons of Bayesian Information Criterion scores of all
4 variable ADMGs using a parameterization of the nested Markov model for discrete data [Evans and Richardson, 2014].
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Figure 2: An exhaustive list of all ADMGs that satisfy the Verma constraint Z ⊥⊥ Y in p(Z,A,M, Y )/p(M |A,Z).



C ADDITIONAL DETAILS ON NON-PARAMETRIC TESTS

In this section we provide additional details on how a non-parametric Verma test can be performed using our methods.
Assume we are given a data set Sn with n i.i.d samples of data, and any appropriate non-parametric test τ(Z, Y,M) that
can be used to test an ordinary conditional independence Z ⊥⊥ Y |M. The idea for a non-parametric Verma test is simple:
Verma constraints resemble ordinary conditional independencies albeit in identified post-intervention distributions. Thus, if
we are able to generate a pseudo-dataset Sp(·) that resembles the post-intervention distribution in which the desired dormant
conditional independence holds, then τ(Z, Y,M) can easily be applied to Sp(·) rather than Sn. More concretely, to use the
dual weights for a non-parametric Verma test we would proceed as follows:

1. Compute qd(M |A,Z) ≡ p(M |A,Z)/p(M |A = a, Z) for each row of data i = 1, . . . , n using suitable machine
learning methods, e.g., kernel regressions or random forests.

2. Create a pseudo-dataset Spn/2 that mimics the post-intervention distribution p(Z,M, Y | do(a)) by drawing n/2
samples with replacement from Sn, where each row i has an (unnormalized) probability of being sampled given by the
dual weights 1/qd(M = mi|A = ai, Z = zi).

3. Apply τ(Z, Y,M) to Spn/2 with some pre-specified significance level α.

Note that some of the statistical inefficiency in our tests come from resampling only half the data from the original dataset
when performing the Verma test. This is the simplest sampling scheme proposed by Thams et al. [2021], but the authors have
also proposed more complex adaptive schemes that may improve performance; see their paper for details. A non-parametric
test using primal weights would proceed in exactly the same way except we would fit the appropriate models to generate the
primal weights 1/q̃(A | Y, Z,M).



D MODELS WITH BASELINE COVARIATES
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Figure 3: (a) A modification of the model in Fig. 1(b) to include baseline covariates C; (b) CADMG showing that the Verma
constraint still exists as a conditional independence Z ⊥⊥ Y | C in p(C,Z,A, Y | do(m)).

In this section we make explicit how our framework extends to settings with baseline covariates. Consider the ADMG in
Fig. 3(a) that is a modification of Fig. 1(b) to include baseline covariates C that point to all other variables Z,A,M, Y. We
show that the inclusion of additional covariates requires only small modifications to the underlying theory in the main paper.

First, notice that there is still no ordinary conditional independence between Z and Y implied by Fig. 3(a). Further, the
post-intervention distribution p(C,Z,A, Y | do(m)) is identified as p(C,Z,A, Y,M = m)/p(M = m|A,Z,C). This
post-intervention distribution factorizes according to the CADMG shown in Fig. 3(b) from which we can read off the
dormant conditional independence Z ⊥⊥ Y | C in p(C,Z,A, Y | do(m)). That is, the Verma constraint between the
anchor and the outcome is now a conditional rather than marginal independence in the post-intervention distribution, and
the distribution itself is obtained using a propensity score for M that includes C in the conditioning set. The identifying
functional for the post-intervention distribution where we intervene on A is also very similar: p(C,Z,M, Y | do(a)) =
p(C,Z)× p(M |A = a, Z,C)×

∑
A p(A|C,Z)× p(Y |Z,A,M,C).

Based on the above observations, the modifications to the theory are as follows. Assumptions (A1) and (A3) remain the
same, however, the relevance assumption (A2) now includes C in the conditioning set (similar to the relevance assumption
in conditional IV models.) That is, (A2) is modified to read: Z is a covariate that is not a causal consequence of A such that
Z 6⊥⊥ A | C and Z 6⊥⊥ Y | A,M,C. As mentioned earlier, the Verma constraint that allows us to test thatA has no bidirected
path to its children is then the dormant conditional independence Z ⊥⊥ Y | C in p(Z,A,M, Y,C)/p(M |A,Z,C). The
tests proposed in Section 5 are modified appropriately by defining q̃(A|Y, Z,M,C) and qd(M |A,Z,C) as:

q̃(A | Y,Z,M,C) ≡ p(A | Z,C)× p(Y | A,M,Z,C)∑
A p(A | Z,C)× p(Y | A,M,Z,C)

qd(M | A,Z,C) ≡ p(M | A,Z,C)
p(M | A = a, Z,C)

.

The primal and dual weights are then used to testZ ⊥⊥ Y |M,C in p(C,Z,A,M, Y )/q̃(A|Y,Z,M,C) andZ ⊥⊥ Y |M,C
in p(C,Z,A,M, Y )/qd(M |A,Z,C). The same weights can be re-used for causal effect estimation as before.

Hence, the proposed framework does not exclude the possibility of including additional baseline covariates. Similar to
conditional IV models, the inclusion of such covariates can be beneficial from an identification standpoint by reducing the
possibility of unmeasured confounding on the causal path from A→M→Y. The addition of these covariates may also
yield additional statistical efficiency in the test and downstream causal effect estimation.



E NESTED MARKOV FACTORIZATION OF ADMGS

The nested Markov factorization of p(V ) with respect to an ADMG G(V ) is defined using conditional ADMGs (CADMGs)
derived from G(V ) and kernel objects derived from p(V ) via a fixing operation [Richardson et al., 2017]. The fixing
operation can be causally interpreted as an application of the g-formula on a single variable to a given graph-kernel pair to
obtain another graph-kernel pair corresponding to a conditional ADMG and a post-intervention distribution that factorizes
according to it. We define the relevant concepts below.

Conditional ADMG (CADMG) – A CADMG G(V,W ) is an ADMG whose vertices can be partitioned into random variables
V and fixed/intervened variables W. Only outgoing directed edges may be adjacent to variables in W. For any random
variable Vi ∈ V in a CADMG G(V,W ), the usual definitions of genealogical relations, such as parents and descendants,
extend naturally by allowing for the inclusion of fixed variables into these sets. However, bidirected connected components
a.k.a districts of a CADMG G(V,W ) are only defined for elements of V .

Kernel – A kernel qV (V | W ) is a mapping from values in W to normalized densities over V . That is, a kernel acts in
most respects like an ordinary conditional distribution. In particular, given a kernel qV (V | W ) and a subset X ⊆ V ,
conditioning and marginalization are defined in the usual way as qX(X | W ) ≡

∑
V \X qV (V | W ) and qV (V \ X |

X,W ) ≡ qV (V |W )/qV (X |W ).

Fixing operation for a single variable – Fixability of a single variable and the graphical and probabilistic operations of fixing
it are defined as follows:

• Fixability – A vertex Vi ∈ V is said to be fixable in G(V,W ) if Vi → . . .→ Vj and Vi ↔ . . .↔ Vj do not both exist
in G, for any Vj ∈ V \ Vi.

• Graphical operation of fixing – The graphical operation of fixing Vi, denoted by φVi(G), yields a new CADMG
G(V \ Vi,W ∪ Vi) where all edges with arrowheads into Vi are removed, and Vi is fixed to a particular value vi. All
other edges in G are kept the same.

• Probabilistic operation of fixing – Given a kernel qV (V | W ), the associated CADMG G(V,W ), and Vi ∈ V , the
corresponding probabilistic operation of fixing Vi, denoted by φVi(qV ;G), yields a new kernel defined as follows:

φVi(qV ;G) ≡ qV \Vi
(V \ Vi |W ∪ Vi) ≡

qV (V |W )

qV (Vi | mbG(Vi),W )
, (1)

where mbG(Vi) denotes the Markov blanket of Vi, which consists of all vertices in the district of Vi and the parents of
the district of Vi (excluding Vi itself.)

Fixing operation for a set of variables – The above definitions can be extended to a set of vertices S as follows:

• Fixability – A set S ⊆ V is said to be fixable if there exists an ordering (S1, . . . , Sp) such that S1 is fixable in G, S2 is
fixable in φS1

(G), and so on. Such an ordering is said to form a valid fixing sequence for S and we denote it by σS .

• Graphical operation – It is known that applying any two valid fixing sequences on S yield the same CADMG, so we
denote this by φS(G(V,W )).

• Probabilistic operation – φσS
(qV ;G) is defined via the usual function composition to yield operators that fix all

elements in S in the order given by σS .

Intrinsic set – A set D is said to be intrinsic in G(V ) if V \D is fixable in G1 and φV \D(G) contains a single district.

Finally, a distribution p(V ) is said to satisfy the nested Markov factorization wrt an ADMG G(V ) if there exists a set of
kernels qD(D | paG(D)), one for every D intrinsic in G(V ), s.t. for every fixable set S and every valid fixing sequence σS ,

φσS
(p(V );G) =

∏
D∈D(φS(G))

qD(D | paG(D)), (2)

where D(φS(G)) denotes the set of all districts in the CADMG φS(G). The nested Markov factorization asserts that every
kernel that can be derived via a valid sequence of fixing satisfies the district factorization with respect to the CADMG
obtained by this sequence, and each of the kernels appearing in the factorization corresponds to intrinsic sets.

1That is, from a causal perspective, qD(D | paG(D))) is identified from p(V ) via sequential applications of the g-formula.



F DETAILS ON SIMULATED DATA
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Figure 4: Data for the simulations are generated according to: (a, b) Two hidden variable causal DAGs and the corresponding
ADMGs that satisfy the front-door assumptions; (c, d) Two hidden variable causal DAGs and the corresponding ADMGs
that do not satisfy the front-door assumptions due to additional confounding and a direct effect of A on Y respectively.

The causal graphs used to perform experiments in Task (i) of Section 7 are shown in Fig. 4 – underlying hidden variables
are depicted with lower opacity to highlight the structure of the ADMG. The first two graphs are ones in which A has no
bidirected path to its children and the Verma constraint Z ⊥⊥ Y in p(Z,A, Y | do(m)) holds; the latter two are ones in
which there is additional confounding or violation of the exclusion restriction, which also coincide with the absence of any
non-parametric equality constraint between Z and Y. We first describe generating data according to the hidden variable
causal model in Fig. 4(a) whose observed margin would nested factorize wrt to the ADMG shown in the same figure. Each
coefficient β(·) appearing in any of the equations below is generated randomly from a uniform distribution Uniform(1, 2).

U1 = Uniform(−1, 1)
p(U2 = 1) = expit(0.5)
p(Z = 1) = expit(0.5)
p(A = 1 | Z,U1, U2) = expit(−0.5 + βZAZ − βU1AU1 + βU2AU2)

p(M = 1 | Z,A) = expit(−0.5− βZMZ + βAMA)

Y | U1, U2,M = βU1Y U1 + βU2Y U2 − βMYM + Normal(0, 1).

Similarly, data generation for Fig. 4 (b) is performed as follows:

U1 = Uniform(−1, 1)
U3 = Uniform(−1, 1)
p(U2 = 1) = expit(0.5)
p(U4 = 1) = expit(0.5)
p(Z = 1 | U3, U4) = expit(0.5 + βU3ZU3 − βU4ZU4)

p(A = 1 | Z,U1, U2) = expit(−0.5 + βZAZ − βU1AU1 + βU2AU2)

p(M = 1 | U3, U4, A) = expit(−0.5− βU3MU3 + βU4MU4 + βAMA)

Y | U1, U2,M = βU1Y U1 + βU2Y U2 − βMYM + Normal(0, 1).

Data generation for Fig. 4(c) is similar to Fig. 4(a) except the equation for M is modified to include U1,2 as follows,

p(M = 1 | Z,A,U1, U2) = expit(−0.5− βZMZ + βAMA+ βU1MU1 − βU2MU2).

Data generation for Fig. 4(d) is also similar to Fig. 4(a) except the equation for Y is modified to include A as follows,

Y | U1, U2,M,A = βU1Y U1 + βU2Y U2 − βMYM − βAYA+ Normal(0, 1).

For non-linear data generating processes, the equations for M are modified in all the graphs in Fig. 4 to add an interaction
term between Z and A. Since we are using the dual weights estimated via machine learning techniques to perform the
front-door test and compute the causal effect, it suffices to make this relation non-linear – non-linearity in other portions of
the data generating process would not affect the computation of the dual weights due to variational independence.

Finally, for experiments comparing IV and front-door estimation, the graph used to generate data in a manner that satisfies
the front-door but not IV assumptions is Fig. 4(a), and so the data generating mechanism remains the same. To generate data
for a graph satisfying both assumptions, we use a subgraph where the Z→M is absent corresponding to dropping Z from
the equation for M as follows: p(M = 1 | A) = expit(−1 + βAMA).



G PROOFS

Theorem 1:

Proof. Per Lemma 1 if p(Z,A,M, Y ) satisfies assumptions (A1-A3), the Verma constraint is non-trivial in the following
sense: There is no ordinary independence constraint between Z and Y in the observed data distribution and the independence
Z ⊥⊥ Y arises only in the post-intervention distribution p(Z,A, Y |do(m)). Under Verma faithfulness, distributions that
satisfy this constraint must nested Markov factorize wrt an ADMG that permits identification of p(Z,A, Y |do(m)), and
where Z and Y are m-separated in the resulting CADMG obtained by removal of edges into M. Clearly Z and Y are not
adjacent (via a directed or bidirected edge) in any such ADMG G. We now show that the existence of any structure such that
A has a bidirected path to one of its children would contradict the aforementioned conditions.

From results in Tian and Pearl [2002], we know that p(Z,A, Y | do(m)) is identified from an observed data distribution
nested Markov relative to G if and only if there is no bidirected path from M to Y in G. Given the existence of A→M→Y
due to assumption (A1), the presence of M↔Y in G then contradicts identifiability of p(Z,A, Y |do(m)). From the
discussion in Appendix A, the relevance assumption is not satisfied if only A↔M exists in G (see Fig. 1(c) for an example.)
Hence, A↔M must be paired with either M↔Y, which we know contradicts identifiability, or A↔Y. When paired with
the latter we get the bidirected path M↔A↔Y which also contradicts identifiability of p(Z,A, Y |do(m)). Hence, in
ADMGs encoding the Verma constraint, the only bidirected edge permitted between A,M, and Y is A↔Y. In fact, A↔Y
must be present to satisfy assumption (A2). This is why the edge is compelled in all ADMGs in the pattern Fig. 3(a).

The presence of A→Y in G does not necessarily contradict identifiability of p(Z,A, Y |do(m)). However, it contradicts
m-separability between Z and Y in the resulting CADMG due to the presence of the chain Z→A→Y which must be
blocked by conditioning on A, but doing so opens a collider path Z ◦→A↔Y (◦→ depicts a directed edge or bidirected
edge; at least one of these must be present in G due to the relevance assumption A2.) So far we have shown that if the Verma
constraint holds, the corresponding ADMG G is one in which (i) Z and Y are not adjacent, (ii) the only bidirected edge
present between the variables A,M, and Y is A↔Y, and (iii) A→Y is not present.

The only remaining possibility for the existence of a bidirected path from A to its child M then is if we have both Z↔A
and Z↔M in G. This too produces a contradiction, as these edges complete another bidirected path M↔Z↔A↔Y
resulting in non-identifiability of p(Z,A, Y |do(m)). Hence, the distribution factorizes according to some ADMG G that
has no bidirected path from A to any of its children (and the choice of valid ADMGs are given by the pattern in Fig. 3(a).)

Lemma 1:

Proof. In any valid ADMG derived from pattern 3(a), we know that A does not have any bidirected path to any of its
children. Let DA represent the district of A in any such ADMG. Per results in Tian and Pearl [2002], the post-intervention
distribution p(V \A|do(a)) is identified as

p(V )×
∑
A qDA

(DA | paG(DA))

qDA
(DA | paG(DA))

.

In our case, this implies p(Z,M, Y |do(a)) = p(Z,A,M, Y )/q̃(A|Z,M, Y )|A=a, where q̃(.) ≡ qDA
(DA|paG(DA)∑

A qDA
(DA|paG(DA) .

Hence, to show that the post-intervention distribution is identified by the same functional in any ADMG in Fig. 3(a),
it suffices to show that qDA

(DA|paG(DA)∑
A qDA

(DA|paG(DA) is the same in all such ADMGs. There are only two cases: the first where
DA = {Z,A, Y } and second where DA = {Z, Y } (M cannot be in DA by the pre-condition that A has no bidirected
path to its children.) In the first case, qDA

(DA | paG(DA)) ≡ p(Z,A, Y | do(m)) = p(Z)× p(A | Z)× p(Y | A,M,Z).
Therefore,

qDA
(DA | paG(DA))∑

A qDA
(DA | paG(D))

=
p(Z)× p(A | Z)× p(Y | A,M,Z)∑
A p(Z)× p(A | Z)× p(Y | A,M,Z)

=
p(A | Z)× p(Y | A,M,Z)∑
A p(A | Z)× p(Y | A,M,Z)

.

In the second case when DA = {A, Y } we have already seen in Section 3 that qDA
(DA | paG(DA)) = p(A | Z)× p(Y |

A,M,Z). The result immediately follows that in both scenarios the conditional kernels are the same. That is, regardless of
the specific edges incorporated from the pattern in Fig. 3(a), the functional for p(Z,M, Y | do(a)) and hence E[Y | do(a)]
remains the same.



References

Robin J. Evans and Thomas S. Richardson. Markovian acyclic directed mixed graphs for discrete data. Annals of Statistics,
pages 1452–1482, 2014.

Thomas S. Richardson, Robin J. Evans, James M. Robins, and Ilya Shpitser. Nested Markov properties for acyclic directed
mixed graphs, 2017. Working paper.

Ilya Shpitser, Robin J. Evans, Thomas S. Richardson, and James M. Robins. Introduction to nested Markov models.
Behaviormetrika, 41(1):3–39, 2014.

Nikolaj Thams, Sorawit Saengkyongam, Niklas Pfister, and Jonas Peters. Statistical testing under distributional shifts. arXiv
preprint arXiv:2105.10821, 2021.

Jin Tian and Judea Pearl. A general identification condition for causal effects. In Proceedings of the 18th National
Conference on Artificial Intelligence, pages 567–573. American Association for Artificial Intelligence, 2002.

Thomas Verma and Judea Pearl. Equivalence and synthesis of causal models. In Proceedings of the 6th Annual Conference
on Uncertainty in Artificial Intelligence, 1990.


	On The True Mediation And Relevance Assumptions
	Exhaustive List of ADMGs Satisfying The Testable Criterion
	Additional Details On Non-Parametric Tests
	Models With Baseline Covariates
	Nested Markov Factorization of ADMGs
	Details On Simulated Data
	Proofs

