
Appendix: Differentiable Causal Discovery Under
Unmeasured Confounding

The Appendix is organized as follows. In Appendix A we discuss details of the Greenery algorithm for penalizing
c-trees and introduce the formalizations necessary to prove its correctness. In Appendix B we provide additional
comments on the protein expression network learned by applying our method to the data from Sachs et al.
(2005). In Appendix C we present formal proofs of results in our paper. In Appendix D we discuss additional
implementation details and choice of hyperparameters for our experiments. Finally in Appendix E we provide
additional experiments not included in the main draft of the paper.

A DETAILS OF THE GREENERY ALGORITHM

Bhattacharya et al. (2020) introduced a graphical and probabilistic operator called primal fixing that can be
applied recursively to an ADMG and its statistical model to identify causal parameters of interest. In this section
we provide the necessary background on the graphical operator and discuss how it relates to the detection of
c-trees. We then show how primal fixing is codified in the steps of Algorithm 1 through an example.

A conditional ADMG (CADMG) G = (V,W,E) is an ADMG whose vertices can be partitioned into random
vertices V and fixed vertices W, with the restriction that no arrowheads point into W (Richardson et al., 2017).
A vertex Vi in a CADMG G = (V,W,E) is said to be primal fixable if there is no bidirected path from Vi to any
of its direct children. The graphical operation of primal fixing Vi in G, denoted by φVi

(G), yields a new CADMG
G = (V \ Vi,W ∪ Vi, E \ {e ∈ E | e = ◦ → Vi or ◦ ↔ Vi}) where Vi is now “fixed” (denoted by a square box
in figures shown in this Supplement) and incoming edges into Vi are deleted. This can be extended to a set of
vertices as follows. A set of k vertices S is said to be primal fixable if there exists an ordering (S1, . . . , Sk) such
that S1 is primal fixable in G, S2 is primal fixable in φS1

(G), S3 is primal fixable in φS2
(φS1

(G)), and so on. It is
easy to see that any such valid ordering on S yields the same final CADMG. Hence, we can denote primal fixing
a set of vertices S as simply φS(G). A vertex Vi in an ADMG G is said to be reachable if V \ Vi is primal fixable
in G. Shpitser et al. (2018) showed that if Vi is reachable in G, then the causal effect of the parents of Vi on Vi
itself is identified, and there is no Vi rooted c-tree in G.1 If no valid primal fixing order exists, Vi along with
the unique minimal set of vertices that could not be primal fixed form a Vi-rooted c-tree (Shpitser et al., 2018).
That is, an ADMG G is arid if and only if every vertex Vi ∈ V is reachable. This forms the basis of Algorithm 1.

V1 V4

V2 V3

(i) Ga

V1 V4

V2 V3

(ii) φV1(Ga)

V1 V4

V2 V3

(iii) φ{V1,V2}(Ga)

V1 V4

V2 V3

(iv) φ{V1,V2,V3}(Ga)

V1 V4

V2 V3

(v) Gb

Figure A: (i) An arid ADMG; (ii) The CADMG obtained after primal fixing V1; (iii) The CADMG obtained after
primal fixing V1 and V2; (iv) The CADMG obtained after primal fixing V1, V2, and V3; (v) A non-arid bow-free
ADMG that is a super model of (i).

We now demonstrate usage of the primal fixing operator to establish that the ADMG Ga shown in Fig. A(i) is
arid and the ADMG Gb shown in Fig. A(v) is not. These are the same graphs shown in Section 2 of the paper
but we redraw and relabel them here for convenience. The reachability of vertices V1, V2, and V3 in Ga is easily
established. In every case, we can primal fix the remaining vertices in a reverse topological order starting with
V4 which has no children. The reachability of V4 is established by noticing that V1 is primal fixable in Ga. In the
resulting CADMG, shown in Fig. A(ii), both V2 and V3 are primal fixable. Primal fixing V2 yields the CADMG

1Actually this was shown with respect to the ordinary fixing operator proposed in Richardson et al. (2017) which
performs the same graphical operation as primal fixing but considers Vi to be fixable when there are no bidirected paths
to any descendant (a vertex Vj such that there exists a directed path from Vi to Vj) of Vi. It is easy to see how primal
fixing is a strict generalization of fixing by noting that the children of Vi is a subset of its descendants.

in Fig. A(iii) and finally primal fixing V3 yields the CADMG in Fig. A(iv). Hence, all vertices in Ga are reachable.
It then follows that Ga is arid. If we try to apply the same reasoning to the Gb in Fig. A(v), we see that V1, V2,
and V3 are still reachable as before. However, we cannot establish a sequence of primal fixing operations to reach
V4 as none of the other vertices are primal fixable in the original graph. Hence, there is a V4-rooted c-tree in Gb
comprised of the arborescence V1 → V2 → V3 → V4 which also forms a bidirected component in Gb.

A.1 Example Application of the Greenery Algorithm

We now demonstrate how the above primal fixing steps relate to Algorithm 1. Let the ordering of vertices of
entries in the matrix be V1, V2, V3, V4. The adjacency matrices D and B for Ga in Fig. A(i) are as follows.

D =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 B =


0 0 1 1
0 0 0 0
1 0 0 0
1 0 0 0

 .
The ith iteration of the outer loop of the algorithm attempts to establish the reachability of Vi, and hence, the
presence or absence of a Vi-rooted c-tree. Note that since the primal fixing operation can be applied at most d−1
times (where d is the number of vertices in G) to determine the reachability of Vi, the inner loop of Algorithm 1
also executes d − 1 times. We now focus on the final iteration of the algorithm where it tries to establish the
reachability of V4.

In the first iteration of the inner loop we have Df = D and Bf = B. Therefore we have,

eB
f

◦D =


0 0 0 0
0 0 0 0
0 0 0.59 0
0 0 0 0

 f =
[
0 0 0.53 0.76

]
F =


0 0 0.53 0.76
0 0 0.53 0.76
0 0 0.53 0.76
0 0 0.53 0.76

 .
Each entry i, j of the matrix eBf ◦D is zero if and only if a bidirected path from Vi to Vj and a directed edge
Vi → Vj do not co-exist in G. The sum of the ith row of this matrix then exactly characterizes the primal fixability
criterion. That is, Vi is primal fixable if and only if the sum of the ith row in eBf ◦D is 0. The above calculations
indicate that the vertices V1, V2, and V4 are all primal fixable in Ga, which can be easily confirmed by looking at
the graph itself. The vector f then summarizes the primal fixability of each vertex except we add the ith row of
an identity matrix to ensure that we do not accidentally primal fix Vi itself when determining its reachability.
The matrix F formed by tiling the f vector d times can then be used as a “mask” that implements the primal
fixing operation applied to V1 and V2 simultaneously, yielding the following updates to Df and Bf .

Df =


0 0 0 0
0 0 0.53 0
0 0 0 0.76
0 0 0 0

 Bf =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
It is easy to confirm that the induced ADMG G(Df , Bf) corresponds to the CADMG shown in Fig. A(iii). Note
that a constant positive scaling factor can also be applied to the hyperbolic tangent function to improve the
sharpness of the approximation of the primal fixing operator. In the second iteration of the loop, we apply the
same process again and obtain,

eB
f

◦D =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 f =
[
0 0 0 0.76

]
F =


0 0 0 0.76
0 0 0 0.76
0 0 0 0.76
0 0 0 0.76

 .
That is, in the second iteration of the algorithm, V3 becomes primal fixable. Applying the primal fixing operator
yields the adjacency matrices,

Df =


0 0 0 0
0 0 0 0
0 0 0 0.58
0 0 0 0

 Bf =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

which induce the CADMG shown in Fig. A(iv) corresponding to primal fixing V3. Thus, in this case, reachability
of V4 is established in 2 steps. However, the algorithm will still perform a third step that does not result in any
additional primal fixing and does not change the conclusion of reachability of V4. As there are no vertices that
have both a bidirected path and directed path to V4 in the final CADMG and corresponding adjacency matrices,

C = eB
f ◦ eDf

is simply the identity matrix. Taking the ith column sum then evaluates to 1 which is subtracted
off later in the final “return” step of the algorithm. A similar argument holds for vertices V1, V2, and V3. Thus,
applying Algorithm 1 to Ga in Fig. A(i) returns a value of 0 confirming that Ga is arid.

We now consider application of the algorithm to the ADMG Gb shown in Fig. A(v). We will apply a scaling
constant of 10 to the hyperbolic tangent function, i.e., we use tanh(10x), so that the values are large enough to
illustrate the main concept. We again focus on the reachability of V4. The adjacency matrices for Gb are:

D =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 B =


0 0 1 1
0 0 0 1
1 0 0 0
1 1 0 0

 .
In the first iteration of the inner loop we have,

eB
f

◦D =


0 0.64 0 0
0 0 0.19 0
0 0 0 0.64
0 0 0 0

 f =
[
1 0.96 1 1

]
F =


1 0.96 1 1
1 0.96 1 1
1 0.96 1 1
1 0.96 1 1

 .
That is, we see that none of the vertices in Gb are primal fixable. Therefore applying the primal fixable operator
through the matrix F results in adjacency matrices,

Df =


0 0.96 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 Bf =


0 0 1 1
0 0 0 0.96
1 0 0 0
1 0.96 0 0

 ,
which induce a “CADMG” that has the same edges as the original graph Gb. Repeated applications of this in
the second and third iterations do not change the structure of the induced graph. Therefore, upon termination
of the inner loop, there remains a directed path from every vertex in V \ V4 to V4 and the vertices still form a
bidirected connected component. That is, there is a V4-rooted c-tree in Gb. This is confirmed when we evaluate

the sum of the ith column of C = eD
f ◦eBf

to 2.34. The other vertices V1, V2, and V3 are still reachable and their
respective column sums upon termination of the inner loop yield a value of 1 each. Subtracting d at the end
of the algorithm still leaves a positive remainder of 1.34. Hence, Algorithm 1 returns a positive quantity when
applied to Gb, confirming that it is not arid.

Akt Erk Jnk PKC

PKA

(i)

Akt Erk Jnk PKC

PKA

(ii)

Figure B: (i) A subgraph of the protein network in Fig. 2 that we use to highlight the Verma constraint between
Akt and PKC; (ii) A CADMG corresponding to the post-intervention distribution that would be obtained by
intervening on Jnk.

B COMMENTS ON PROTEIN EXPRESSION ANALYSIS

In this section we discuss the Verma restriction that allows us to establish that Erk is not a cause of PKA. The
importance of this relation stems from manipulation of Erk by the authors of Sachs et al. (2005) and establishing
that no downstream change was observed in PKA.

We first point out that there is no ordinary conditional independence constraint between Akt and PKC in the
learned structure shown in the right panel of Fig. 2, despite the absence of an edge between the two. This can
be confirmed by noting the presence of an inducing path between Akt and PKC. An inducing path between Vi
and Vj is a path from Vi to Vj where every non-endpoint is both a collider (→ ◦ ←,↔ ◦ ←, or ↔ ◦ ↔) and
has a directed path to either Vi or Vj . It is well-known that the presence of such a path precludes the possibility
of an ordinary conditional independence of the form Vi ⊥⊥ Vj | Z for any Z ⊆ V \ {Vi, Vj} (Verma and Pearl,
1990). In our analysis it can be confirmed that Akt → Erk ↔ PKA ↔ PKC is an inducing path between Akt
and PKC. Thus, there is no ordinary conditional independence between these two proteins under our learned
model. However, under the faithfulness assumption, the absence of the edge between Akt and PKC implies an
equality restriction. We now provide the non-parametric form of the corresponding Verma constraint.

Consider the ADMG and corresponding distribution obtained by recursively marginalizing out all vertices (except
PKC) with no outgoing directed edges in Fig. 2. In performing this graphical operation, none of the variables
removed act as a latent confounder for the remaining variables in the problem. Therefore, by rules of latent
projection described in Verma and Pearl (1990), we simply obtain a subgraph of the original network as shown in
Fig. B(i). Note that the inducing path between Akt and PKC is still preserved. Let p(V s) be the corresponding
marginal distribution on the remaining subset of variables. The Verma constraint is then given by,

Akt ⊥⊥ PKC in
p(V s)

p(Jnk | Erk,PKA)
.

Intuitively, one can view the independence between Akt and PKC as manifesting in a post-intervention distri-
bution obtained after intervening on Jnk, resulting in the CADMG (or truncated ADMG) shown in Fig. B(ii)
where incoming edges to Jnk are removed. The resulting independence is then easily read off from the CADMG
via the m-separation criterion (Richardson, 2003). See Tian and Pearl (2002) and Richardson et al. (2017) for
more details on how to derive such constraints in general. Orienting the Erk↔ PKA edge as either Erk← PKA
or Erk → PKA breaks the inducing path between Akt and PKC, meaning that either orientation produces a
different independence model implying an ordinary independence constraint instead of the Verma restriction.
We evaluated the BIC scores with either orientation and confirm that they both yield an increase in the score.
This indicates that our learned model which posits that Erk is correlated with PKA through unmeasured con-
founding is the preferred causal explanation. This explanation is consistent with experiments performed in Sachs
et al. (2005), and we are able to arrive at the same conclusion from purely observational data. Moreover, this
explanation was differentiated from others via the Verma restriction between Akt and PKC, highlighting the
value of considering general equality restrictions beyond ordinary conditional independence.

C PROOFS

Theorem 1 The constraints shown in Table 1 are satisfied if and only if the adjacency matrices satisfy the
relevant property of ancestrality, aridity, and bow-freeness respectively.

Proof. We use the following facts for all of our proofs. The matrix exponential of a square matrix A is defined
as the infinite Taylor series,

eA =

∞∑
k=0

1

k!
Ak. (1)

For a binary square matrix A, corresponding to a directed/bidirected adjacency matrix, the entry Ak
ij counts the

number of directed/bidirected walks of length k from vertex i to vertex j; see for example (Butler, 2008).

Ancestral ADMGs

Consider the constraint shown in Table 1. That is,

trace(eD)− d+ sum(eD ◦B) = 0.

It is easy to see from results in (Zheng et al., 2018) that the constraint trace(eD)− d = 0 is satisfied if and only
if the induced graph G(D,B) is acyclic. We now show that sum(eD ◦B) = 0 if and only if G is ancestral.

By definition of the matrix exponential,

sum(eD ◦B) = sum

(
I ◦B +

∞∑
k=1

1

k!
Dk ◦B

)

= sum

(
I ◦B

)
+

∞∑
k=1

1

k!
sum

(
Dk ◦B

)
,

where the second equality follows from basic matrix properties.

The first term in the series, sum(I ◦B), counts the number of self bidirected edges Vi ↔ Vi which is a special-case
violation of ancestrality. This term is zero if no such edges exist. An entry i, j in the matrix Dk ◦B counts the
number of occurences of directed paths from Vi to Vj of length k such that Vi and Vj are also connected via a
bidirected edge. Therefore, all remaining terms of the form 1

k! sum(Dk ◦ B) count the number of directed paths
of length k that violate the ancestrality property rescaled by a positive factor of 1

k! . That is, these terms are all
≥ 0 and equal to zero only when no such paths exist, i.e., G is ancestral.

Arid ADMGs

Consider the constraint shown in Table 1. That is,

trace(eD)− d+ Greenery(D,B) = 0.

The terms trace(eD)−d capture the acyclicity constraint as before. We now show that the output of Algorithm 1
is zero if and only if G satisfies the arid property. That is, Greenery(D,B) = 0 is satisfied if and only if G is
arid. The background required for this proof was laid out in Appendix A.

The outer loop of Algorithm 1 iterates over each vertex Vi in order to evaluate its reachability, or equivalently,
the presence/absence of a Vi-rooted c-tree (Shpitser et al., 2018). The inner loop achieves this as follows.

Reachability of Vi can be determined in at most d−1 primal fixing operations. Therefore, the inner loop executes
d − 1 times. On each iteration, the algorithm considers the primal fixability of vertices by effectively treating
the matrices Df and Bf as adjacency matrices of a CADMG. In the first iteration, Df and Bf are initialized
with values from the directed and bidirected adjacency matrices respectively. The sum of the jth row in the

matrix eB
f ◦Df evaluates to zero if and only if there are no bidirected paths from Vj to any of its direct children

Vk, which exactly corresponds to the graphical criterion for determining primal fixability of Vj . The addition of

the ith row of an identity matrix to t ensures that Vi itself is not treated as primal fixable when evaluating its
reachability. Therefore, in the first iteration, the vector f encodes a smoothened version (due to the application
of the hyperbolic tangent function) of the usual primal fixability criterion for all vertices V \ Vi in the original
graph G. Tiling the vector f to form the d× d matrix F allows us to apply the softened version of primal fixing
to the adjacency matrices, which is performed in lines 6-8 of the algorithm. On the next iteration, the matrices
Df and Bf can then be treated as adjacency matrices of a CADMG obtained by primal fixing a set of vertices,
say S1, that satisfied the primal fixability criterion in G. The same logic can be applied to subsequent iterations
of the algorithm where we determine the primal fixability of a set of vertices V \ (S1 ∪ Vi) in φS1

(G), denote the
primal fixable vertices as S2, and then proceed to do the same for V \ (S1 ∪ S2 ∪ Vi) in φS1∪S2

(G), and so on.

On termination of the inner loop, we have that S1 ∪ S2, . . . ,∪Sd−1 ⊆ V \ Vi. We first consider the case when
equality holds. In this case, Vi is reachable, from which it follows that there is no Vi-rooted c-tree in G (Shpitser
et al., 2018). The final matrices Df and Bf then correspond to a CADMG where all vertices except Vi have
been primal fixed. In such a CADMG the only edges that may be present are directed edges into Vi due to the

removal of incoming edges to all other vertices in the graph. Thus, eB
f

evaluates to an identity matrix as there
are no bidirected edges. Assuming G is a graph with no directed cycles (which is already enforced by the first

two terms in the arid constraint), the Hadamard product C = eB
f ◦ eDf

is then also an identity matrix. Taking
the sum of the ith column of C then simply evaluates to 1. If every vertex Vi ∈ V is reachable in this manner,
it implies that the graph is arid, and the greenery quantity will then evaluate to d. The subtraction of d in the
“return” statement of Algorithm 1 then returns a value of 0 for arid graphs. Now we consider the case when
equality does not hold, i.e., there exists a set of vertices X = V \Vi \ (S1∪S2 · · ·∪Sd−1) that could not be primal
fixed. This implies that Vi is not reachable and there exists a Vi-rooted c-tree. By definition, the structure of
this c-tree comprises of directed and bidirected paths from vertices in X to Vi. The sum of the ith column in

C = eB
f ◦ eDf

then provides a weighted count of these paths. Subtracting off d in the final “return” statement
then yields a positive quantity that provides a weight for each Vi-rooted c-tree detected in a non-arid graph G.

Bow-free ADMGs

Consider the constraint shown in Table 1. That is,

trace(eD)− d+ sum(D ◦B) = 0.

The terms trace(eD)− d capture the acyclicity constraint as before. It is easy to see that the term sum(D ◦B)
counts the number of bows in the induced graph G. Hence, sum(D ◦B) is zero if and only if G is bow-free.

Theorem 2 Let p(V ; θ∗) be a distribution in the curved exponential family that is Markov and faithful with
respect to an arid ADMG G∗. Finding the global optimum of the continuous program in display (1) with f ≡ BIC
yields an ADMG G(θ) that implies the same equality restrictions as G∗.

Proof. This follows immediately from the validity of the constraints in Theorem 1 and the consistency of the
BIC score for model selection in curved exponential families (Haughton, 1988).

Corollary 1.2 The results in Theorem 1 and Corollary 1.1 hold if every occurrence of a matrix exponential eA

is replaced with the matrix power (I + cA)d for any c > 0, where I is the identity matrix.

Proof. The proof is straightforward by noting that the binomial expansion of (I + cA)d = I +
∑d

k=1

(
d
k

)
ckAk

which is similar to the infinite series expansion of the matrix exponential truncated to d terms. As paths greater
than length d are irrelevant in a system with d vertices, these terms are sufficient.

Hyperparameter Setting Justification

Tolerance for h(θ) 10−8 Numerically close enough to 0 – the lower the better.

Max dual ascent iterations 100 Same value as in Zheng et al. (2018); convergence is
typically achieved within 10 iterations.

RICF increment s 1 RICF often converges in 10 steps (Drton et al., 2009;
Nowzohour et al., 2017). Higher values should be
used for larger graphs.

Regularization strength λ 0.05 Obtained through manual testing on held-out data
derived from Fig. 1(b,c).

Progress rate r 0.25 Same value as in Zheng et al. (2018); Yu et al. (2019).

Tolerance for RICF 10−4 Numerically close enough to 0 – the lower the better.

Table A: Hyperparameter settings used for our experiments.

D IMPLEMENTATION DETAILS

In this section we discuss implementation details of our procedure that were not included in the main paper.

Implementation of Constraints

As mentioned in the main paper, we use the representation of constraints in Table 1 obtained by replacing
each matrix exponential eA with (I + cA)d. We have two primary reasons for doing so. First, as pointed out
by Yu et al. (2019), the latter representation is numerically more stable. Second, by evaluating the binomial

expansion (I + cA)d = I +
∑d

k=1

(
d
k

)
ckAk explicitly, we are able to obtain analytic gradients for our constraints

automatically via the HIPS Autograd package (Maclaurin et al., 2015; Maclaurin, 2016). Analytic gradients for
the matrix exponential on the other hand are not easily obtained and the function itself is not implemented in
many popular computing libraries. In our implementation we use a value of c = 1 when computing portions of
the constraint related to directed edges and a value of c = 2 when computing portions of the constraint related
to bidirected edges. As the constraints in Theorem 1 are valid for any c > 0, these values were chosen only to
make values of h(θ) under violations of ancestrality, aridity, and bow-freeness to be larger than the tolerance
level (10−8) of the augmented Lagrangian procedure. As mentioned in Section A, a scaling factor applied to
the hyperbolic tangent function controls the sharpness of approximation of the primal fixing operator. In our
experiments we use a scaling factor of ln(5000), but any sufficiently large value suffices as long as the penalty
h(θ) computed for c-trees is above the tolerance level of the augmented Lagrangian procedure. Finally symmetry
of the matrix β is enforced by requiring each off-diagonal entry βij and βji are tied to a single free parameter.
Positive-definiteness of β is guaranteed by construction in the RICF procedure (Drton et al., 2009).

Choice of Hyperparameters

We summarize our choice of hyperparameters and justification for these choices in Table A. Choice of some
hyperparameters, such as tolerance levels for RICF and increments in RICF iterations, require little justification
as lower tolerance and more iterations can only improve approximation. We set specific values only to cap the
run time of our procedure. Choices for most other hyperparameters are based on prior literature.

Converting Estimates of θ to an ADMG G(θ)

The final step of Algorithm 3 returns an ADMG G(θ) as follows. We first derive the matrices δ and β from θ.
The structure of the induced ADMG is then given by: Vi → Vj exists in G if |δij | > ω and Vi ↔ Vj exists in
G if |βij | > ω for all i 6= j. Such thresholding is standard in similar continuous optimization structure learning
methods, such as Zheng et al. (2018) and Yu et al. (2019), and the threshold can be made arbitrarily small as
long as tolerance to h(θ) is also small. In our experiments we use ω = 0.05.

500 1000 1500 2000

Sample size

0

20

40

60

80

100

Re
co

ve
ry

 o
f t

ru
e

m
od

el
/s

up
er

 m
od

el
 (%

) ABIC Arid
ABIC Bow-free
greedyBAP

Figure C: Bar plots showing rate of recovery of the true equivalence class or a super model of the true equivalence
class of ADMGs with a Verma constraint as a function of sample size. The underlying data is the same as the
one used to generate the plots in Fig. 2.

λ True model Super model Wrong model

5e-4 0.20 0.80 0.00

5e-3 0.25 0.70 0.05

5e-2 0.39 0.41 0.20

5e-1 0.01 0.00 0.99

5e0 0.00 0.00 1.00

Table B: Analysis of different settings of L0-regularization parameter λ in the ABIC bow-free procedure. We
report the fraction of times the procedure recovered the true model (or one that is equivalent to it), a super
model of the true model, or an incorrect independence model. The underlying data for the experiment is the
same as the one used to generate the bar plots in Fig. 2 for n = 1000. We use the underlined λ = 5e-2 for all
experiments.

E ADDITIONAL RESULTS AND EXPERIMENTS

In this section we provide additional results and experiments that were excluded from the main draft due to
space constraints.

Fig. C provides additional insight into the modes of failure for each algorithm used to recover Verma constraints
in the experiments corresponding to the bar plots in Fig. 2 of the main draft. It is easy to see from Fig. C that
more often than not, the arid and bow-free ABIC methods yield an equivalent model or a super model of the
true ADMG while the greedyBAP method more often returns an incorrect model.

Table B shows the results obtained from the ABIC bow-free procedure for different settings of regularization
stength λ. Results are shown for the same task as in Fig. 2 of recovering ADMGs with a Verma constraint
for sample size n = 1000. As expected, for low values of λ, the procedure is more likely to return a denser
ADMG corresponding to a super model of the true model. As λ increases, the procedure recovers the true model
more often, and finally for relatively large values of λ the procedure almost always returns a sparser ADMG
corresponding to an incorrect independence model.

Finally, we present results for 15 variable ADMGs in Table C to supplement the 10 variable experiments in Table 2
of the main paper. We observe similar trends showing that our method performs favorably in comparison to
baselines for recovery of both arid and ancestral ADMGs.

Skeleton Arrowhead Tail

Method tpr ↑ fdr ↓ tpr ↑ fdr↓ tpr ↑ fdr ↓

gBAP (Nowzohour et al., 2017) 0.80 0.27 0.28 0.53 0.02 0.42

ABIC (bow-free) 0.83 0.15 0.69 0.23 0.26 0.41

Skeleton Arrowhead Tail

Method tpr ↑ fdr ↓ tpr ↑ fdr↓ tpr ↑ fdr ↓

FCI (Spirtes et al., 2000) 0.29 0.11 0.24 0.56 0.05 0.74

gSPo (Bernstein et al., 2020) 0.87 0.23 0.41 0.62 0.31 0.88

ABIC (ancestral) 0.77 0.09 0.66 0.24 0.62 0.68

Table C: Comparison of our method to greedyBAP (left) and FCI (right) for recovering 15 variable arid and
ancestral ADMGs respectively. The metrics reported are analogous to Table 2 in the main text. (↑/↓ indicates
higher/lower is better.)

References

Bernstein, D., Saeed, B., Squires, C., and Uhler, C. (2020). Ordering-based causal structure learning in the
presence of latent variables. In International Conference on Artificial Intelligence and Statistics, pages 4098–
4108. PMLR.

Bhattacharya, R., Nabi, R., and Shpitser, I. (2020). Semiparametric inference for causal effects in graphical
models with hidden variables. arXiv preprint arXiv:2003.12659.

Butler, S. K. (2008). Eigenvalues and structures of graphs. PhD thesis, UC San Diego.

Drton, M., Eichler, M., and Richardson, T. S. (2009). Computing maximum likelihood estimates in recursive
linear models with correlated errors. Journal of Machine Learning Research, 10:2329–2348.

Haughton, D. M. (1988). On the choice of a model to fit data from an exponential family. Annals of Statistics,
16(1):342–355.

Maclaurin, D. (2016). Modeling, inference, and optimization with composable differentiable procedures. PhD
thesis.

Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015). Autograd: Effortless gradients in Numpy. In ICML
2015 AutoML Workshop, volume 238, page 5.

Nowzohour, C., Maathuis, M. H., Evans, R. J., Bühlmann, P., et al. (2017). Distributional equivalence and
structure learning for bow-free acyclic path diagrams. Electronic Journal of Statistics, 11(2):5342–5374.

Richardson, T. S. (2003). Markov properties for acyclic directed mixed graphs. Scandinavian Journal of Statistics,
30(1):145–157.

Richardson, T. S., Evans, R. J., Robins, J. M., and Shpitser, I. (2017). Nested Markov properties for acyclic
directed mixed graphs. Working paper.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005). Causal protein-signaling networks
derived from multiparameter single-cell data. Science, 308(5721):523–529.

Shpitser, I., Evans, R. J., and Richardson, T. S. (2018). Acyclic linear SEMs obey the nested Markov property.
In Proceedings of the 34th Annual Conference on Uncertainty in Artificial Intelligence.

Spirtes, P. L., Glymour, C. N., and Scheines, R. (2000). Causation, prediction, and search. MIT press.

Tian, J. and Pearl, J. (2002). On the testable implications of causal models with hidden variables. In Proceedings
of the 18th Conference on Uncertainty in Artificial Intelligence, pages 519–527.

Verma, T. and Pearl, J. (1990). Equivalence and synthesis of causal models. In Proceedings of the 6th Annual
Conference on Uncertainty in Artificial Intelligence.

Yu, Y., Chen, J., Gao, T., and Yu, M. (2019). DAG-GNN: DAG structure learning with graph neural networks.
In Proceedings of the 36th International Conference on Machine Learning, pages 7154–7163.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P. (2018). DAGs with NO TEARS: Continuous
optimization for structure learning. In Advances in Neural Information Processing Systems, pages 9472–9483.

	DETAILS OF THE GREENERY ALGORITHM
	Example Application of the Greenery Algorithm

	COMMENTS ON PROTEIN EXPRESSION ANALYSIS
	PROOFS
	IMPLEMENTATION DETAILS
	ADDITIONAL RESULTS AND EXPERIMENTS

